Skip to main content
Log in

N-terminal epitope surface imprinted particles for high selective cytochrome c recognition prepared by reversible addition- fragmentation chain transfer strategy

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A kind of surface imprinted particles was synthesized to recognize cytochrome c (Cyt c) by a novel strategy combining reversible addition-fragmentation chain transfer (RAFT) radical polymerization and epitope surface imprinting. N-terminal epitope nonapeptide of Cyt c was chosen as the template. The selectivity of these particles for protein recognition was obviously improved due to the selection of epitopes rather than the whole protein as templates and the controllable length of polymer shell chain. After epitope had been modified on the surface of silica, the surface imprinted polymer with controlled imprinted layer was synthesized with monomers and cross-linkers by RAFT radical polymerization strategy. The epitope surface imprinted particles were obtained after the peptide removed and trithioester group destruction by hexylamine. The binding capacity of N-terminal peptide reached 1.88 mg peptide per gram with imprinting factor (IF) as 2.42 while the binding capacity of Cyt c reached 8.89 mg protein per gram with IF as 1.71, which were obviously higher than the IF of the material without RAFT strategy. Moreover, Cyt c could be selectively recognized by the epitope surface imprinted particles even in presence of the competitive proteins with different molecular weight and isoelectric point. The performance of protein recognition remained 90% after five cycles of adsorption and desorption. All these results demonstrated that the epitope surface imprinted particles prepared by RAFT strategy are promising to achieve the protein recognition with higher recognition ability, selectivity and reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21804099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinran Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lin, M., Zhang, H. et al. N-terminal epitope surface imprinted particles for high selective cytochrome c recognition prepared by reversible addition- fragmentation chain transfer strategy. Chem. Pap. 76, 3937–3947 (2022). https://doi.org/10.1007/s11696-022-02134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02134-y

Keywords

Navigation