Skip to main content

Kinetics of alite formation and ye’elimite decomposition in alite-ye’elimite cement clinker

Abstract

Alite-ye'elimite cement (ACSA) was synthesized by single firing process at lower temperature with addition of phosphorous slag and copper slag, which could be a promising low-energy Portland cement. The coexistence of alite and ye’elimite in this clinker can improve the cement quality and their coproduction during clinkering is crucial. Thus, in order to modify the mineralogical phase composition and its chemical industrial process during the clinker sintering, the kinetics of alite formation and ye’elimite decomposition processes were studied by XRD Rietveld refinement method in this work. Results showed that, during the alite formation and Ye’elimite decomposition processes, Ginstling-Brounshtein diffusion model can be employed to determine their apparent activation energy. The activation energy of ye'elimite decomposition with temperature lower and higher than 1275 °C are 230.4 kJ/mol and 998.9 kJ/mol, respectively. The activation energy of alite formation is temperature dependent in a piecewise function divided by 1278.5 °C. The key to make alite and ye’elimite better coexisted in cement production could be controlling the acquisition of CaO during alite formation and hindering the diffusion of CaO to contact with Ye’elimite during decomposition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Availability of data and materials

All the original data can be shared with appropriate reason.

References

  • Altun IA (1999) Effect of CaF2 and MgO on sintering of cement clinker. Cem Concr Res 29(11):1847–1850

    CAS  Article  Google Scholar 

  • Atkins P, Paula J (2002) J physical chemistry, 7th edn. Oxford University, Oxford

    Google Scholar 

  • Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9(2):177–184

    CAS  Google Scholar 

  • Calos NJ, Kennard CHL, Whittaker AK, Davis RL (1995) Structure of calcium aluminate sulfate Ca4Al6O16S. J Solid State Chem 119(1):1–7

    CAS  Article  Google Scholar 

  • Canbek S, Shakouri STE (2020) Laboratory production of calcium sulfoaluminate cements with high industrial waste content. Cement and Concrete Composites 106:103475

    CAS  Article  Google Scholar 

  • Chen L, Wu ZQ, Wang C, Ouyang J, Xia XH (2012) Exploring the temperature-dependent kinetics and thermodynamics of immobilized glucose oxidase in microchip. Anal Methods 4(9):2831–2837

    CAS  Article  Google Scholar 

  • Chitvoranund N, Winnefeld F, Hargis CW, Sinthupinyo S, Lothenbach B (2017) Synthesis and hydration of alite-calcium sulfoaluminate cement. Adv Cem Res 29(3):101–111

    Article  Google Scholar 

  • Chromý S (1999) Mechanism and kinetics of the thermal decomposition of alite in refractory material based on cement clinker. ZKG Int 52:576–584

    Google Scholar 

  • Cuesta A, De la Torre AG, Losilla ER, Peterson VK, Rejmak P, Ayuela A, Frontera C, Aranda MAG (2013) Structure, atomistic simulations, and phase transition of stoichiometric Yeelimite. Chem Mater 25(9):1680–1687

    CAS  Article  Google Scholar 

  • Djuric M, Zivanovic B, Petrasinovic-Stojkanovic L, Ranogajec J (1992) Computerized thermodynamic analysis of reactions during sintering of CaO·Al2O3·SiO2 system. Cem Concr Res 22(1):139–148

    CAS  Article  Google Scholar 

  • Duvallet T, Robl T (2012) Production of alite-calcium sulfoaluminate- ferrite cements from coal and other industrial by-products. 2012 Word Of Coal Ash (WOCA) Conference

  • Erdoğan ST, Canbek (2020) Influence of production parameters on calcium sulfoaluminate cements. Constr Build Mater 239:117866

    Article  CAS  Google Scholar 

  • Ginstling VIB (1950) Concerning the diffusion kinetics of reactions in spherical particles. Russ J Appl Chem 23:1327–1338

    CAS  Google Scholar 

  • Hanein T, Glasser FP, Campbell Bannerman MN (2015) Thermodynamics of Portland Cement Clinkering. The 14th International Congress on the Chemistry of Cement (ICCC) 2015

  • Herfort D (2015) Chemistry of the clinker production process. J Chin Ceram Soc 43(10):1314–1323

    CAS  Google Scholar 

  • Hökfors B, Boström D, Viggh E, Backman R (2015) On the phase chemistry of Portland cement clinker. Adv Cem Res 27(1):50–60

    Article  Google Scholar 

  • Horkoss S, Lteif R, Rizk T (2010) Calculation of the C3A percentage in high sulfur clinker. Int J Anal Chem (4):5

  • Hu Y (2016) The preparation and composition analysis of alite-Ye’elimite with industrial wastes. Ceram Silik 60(3):179–187

    CAS  Article  Google Scholar 

  • Hu Y, Li W, Ma S, Wang Q, Zou H, Shen X (2018) The composition and performance of alite-ye’elimite clinker produced at 1300 °C. Cem Concr Res 107:41–48

    CAS  Article  Google Scholar 

  • Huang Y, Wang S, Hou P, Chen Y, Gong C, Lu L (2015) Mechanisms and kinetics of the decomposition of calcium barium sulfoaluminate. J Therm Anal Calorim 119(3):1731–1737

    CAS  Article  Google Scholar 

  • Johansen V (1973) Model for reaction between cao particles and portland cement clinker. J Am Ceram Soc 56(9):450–454

    CAS  Article  Google Scholar 

  • Juiphunthong P, Joyklad P (2019) Utilization of several industrial wastes as raw material for calcium sulfoaluminate cement. Materials 12(20):3319

    Article  CAS  Google Scholar 

  • Khawam A, Flanagan DR (2006) Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Sci 95(3):472–498

    CAS  PubMed  Article  Google Scholar 

  • Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110(35):17315–28

    CAS  PubMed  Article  Google Scholar 

  • Khessaimi Y, Hafiane Y, Smith A, Trauchessec R, Diliberto C, Lecomte A (2018) Solid-state synthesis of pure ye’elimite. J Eur Ceram Soc 38(9):3401–3411

    Article  CAS  Google Scholar 

  • Khessaimi Y, Hafiane Y, Smith A (2019) Ye’elimite synthesis by chemical routes. J Eur Ceram Soc 39(4):1683–1695

    Article  CAS  Google Scholar 

  • Klemm WA, Jawed I, Holub KJ (1979) Effects of calcium fluoride mineralization on silicates and melt formation in portland cement clinker. Cem Concr Res 9(4):489–496

    CAS  Article  Google Scholar 

  • Li X, Zhang Y, Shen X, Wang Q, Pan Z (2014) Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide. Cem Concr Res 55:79–87

    CAS  Article  Google Scholar 

  • Li X, Shen X, Tang M (2014) Stability of tricalcium silicate and other primary phases in Portland cement clinker. Ind Eng Chem Res 53(5):1954–1964

    CAS  Article  Google Scholar 

  • Li X, Shen X, Xu J, Li X, Ma S (2015) Hydration properties of the alite–ye’elimite cement clinker synthesized by reformation. Constr Build Mater 99:254–259

    Article  Google Scholar 

  • Liu XC, Li YJ, Zhang N (2002) Influence of MgO on the formation of Ca3SiO5 and 3CaO center dot 3Al2O3center dot CaSO4 minerals in alite-sulphoaluminate cement. Cem Concr Res 32(7):1125–1129

    CAS  Article  Google Scholar 

  • Lu L, Li Q, Wang S, Cheng X (2012) Study on synthesis and performance of alite-strontium calcium sulfoaluminate cement. Adv Cem Res 24(4):187–192

    CAS  Article  Google Scholar 

  • Ma S, Shen X, Gong X, Zhong B (2006) Influence of CuO on the formation and coexistence of 3CaO·SiO2 and 3CaO·3Al2O3·CaSO4 minerals. Cem Concr Res 36(9):1784–1787

    CAS  Article  Google Scholar 

  • Ma B, Li X, Mao Y, Shen X (2013) Synthesis and characterization of high belite sulfoaluminate cement through rich alumina fly ash and desulfurization gypsum. Ceram-Silik 57(1):7–13

    CAS  Google Scholar 

  • Ma S, Snellings R, Li X, Shen X, Scrivener KL (2013) Alite-ye’elimite cement: synthesis and mineralogical analysis. Cem Concr Res 45:5–20

    Article  CAS  Google Scholar 

  • Ma S, Ge D, Li W, Hu Y, Xu Z, Shen X (2019) Reaction of Portland cement clinker with gaseous SO2 to form Alite-ye’elimite. Cem Concr Res 116:299–308

    CAS  Article  Google Scholar 

  • Mohan K, Glasser FP (1977) The thermal decomposition of Ca3SiO5 at temperatures below 1250°C: part 1. Pure C3S and the influence of excess CaO or Ca2SiO4. Cem Concr Res 7(1):1–7

    CAS  Article  Google Scholar 

  • Mohan K, Glasser FP (1977) The thermal decomposition of Ca3SiO5 at temperatures below 1250°C: Part 2. The influence of Mg, Fe, Al and Na oxides on the decomposition. Cem Concr Res 7(3):269–275

    CAS  Article  Google Scholar 

  • Morikawa H, Minato I, Tomita T, Iwai S (1975) Anhydrite: a refinement. Acta Crystallogr B 31(8):2164–2165

    Article  Google Scholar 

  • Mumme W (1995) Crystal structure of tricalcium silicate from a Portland cement clinker and its application to quantitative XRD analysis. Neues Jahr Buch Fur Mineralogie Monatshefte 1995:145–160

    Google Scholar 

  • Noirfontaine MND, Tusseau-Nenez S, Signes-Frehel M, Gasecki G, Girod-Labianca C (2009) Effect of phosphorus impurity on tricalcium silicate T1: from synthesis to structural characterization. J Am Ceram Soc 92(10):2337–2344

    Article  CAS  Google Scholar 

  • Nurse RW (1952) The effect of phosphate on the constitution and hardening of portland cement. J Appl Chem 2(12):708–716

    CAS  Article  Google Scholar 

  • Odler I, Zhang H (1996) Investigations on high SO3 portland clinkers and cements I. Clinker synthesis and cement preparation. Cem Concr Res 26(9):1307–1313

    CAS  Article  Google Scholar 

  • Pedrosa ET, Boeck L, Putnis CV, Puntis A (2017) The replacement of a carbonate rock by fluorite: kinetics and microstructure. Am Miner 102(1):126–134

    Article  Google Scholar 

  • Provis J (2016) On the use of the Jander equation in cement hydration modelling. Rilem Tech Lett 1:62–66

    Article  Google Scholar 

  • Puertas F, Varela MTB, Molina SG (1995) Kinetics of the thermal decomposition of C4A3S̄ in air. Cem Concr Res 25(3):572–580

    CAS  Article  Google Scholar 

  • Ravaszová S, Dvořák K (2020) Development of crystallinity of triclinic polymorph of tricalcium silicate. Materials 13(17):3734

    PubMed Central  Article  CAS  Google Scholar 

  • Skalamprinos S, Galan I, Hanein T, Glasser F (2018) Enthalpy of formation of ye’elimite and ternesite. J Therm Anal Calorim 131(3):2345–2359

    CAS  Article  Google Scholar 

  • Staněk T, Sulovský P (2009) The influence of phosphorous pentoxide on the phase composition and formation of Portland clinker. Mater Charact 60(7):749–755

    Article  CAS  Google Scholar 

  • Taylor HFW (1997) Cement chemistry. Thomas Telford, USA

    Book  Google Scholar 

  • Telschow S (2012) Clinker burning kinetics and mechanism. Department of Chemical and Biochemical Engineering Combustion and Harmful Emission Control Research Centre Technical University of Denmark. 2012 PhD thesis

  • Vattulainen I, Merikoski J, Ala-Nissila T, Ying SC (1997) Non-arrhenius behavior of surface diffusion near a phase transition boundary. Phys Rev Lett 79(2):257–260

    CAS  Article  Google Scholar 

  • Wang J-P, Erdenebold U (2020) A study on reduction of copper smelting slag by carbon for recycling into metal values and cement raw material. Sustainability 12(4):1421

    CAS  Article  Google Scholar 

  • Wang Y, Thomson WJ (1996) Kinetic studies of tricalcium silicate formation from sol-gel precursors. J Mater Sci 31(5):1319–1325

    CAS  Article  Google Scholar 

  • Wang W, Chen X, Chen Y, Dong Y, Ma C (2011) Calculation and Verification for the Thermodynamic Data of 3CaO·3Al2O3·CaSO4. Chin J Chem Eng 19(3):489–495

    CAS  Article  Google Scholar 

  • Wang Q, Ye Z, Hu Y, Wei S (2021) Effect of gypsum dosage on the hydration and strength of alite-ye’elimite cement synthesized at 1300 °C. Constr Build Mater 287:123063

    CAS  Article  Google Scholar 

  • Xuan H, Lu L, Liu P, Cheng X (2008) Property of alite-barium calcium sulphoaluminate cement. J Chin Ceram Soc 36:209–214

    CAS  Google Scholar 

  • Yamnova NA, Zubkova NV, Eremin NN, Zadov AE, Gazeev VM (2011) Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallogr Rep 56(2):210–220

    CAS  Article  Google Scholar 

  • Yang T, Li R, Zhou J, Cen K (2006) Formation kinetics of high-temperature phase sulphoaluminate. J Chem Ind Eng 57(10):2327–2331

    CAS  Google Scholar 

  • Zhang Y, Li X, Shen X (2017) Kinetics of calcium sulfoaluminate with 1% iron oxide by isothermal and isoconversional methods. Adv Cem Res 29(8):336–346

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the supports of the Funds of the National Natural Science Foundation of China (No. U1806222), the science and technology plan project of Chuzhou (2019ZN005), the National Natural Science Foundation of China (No. 51602148, 51772146) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Zheng, Wei and Wang conducted the experimental work and wrote the paper mainly. The other authors contributed to the data analysis and discussion.

Corresponding author

Correspondence to Qianqian Wang.

Ethics declarations

Conflict of interest

The authors declare that they are no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11265 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Wei, S., Wang, Q. et al. Kinetics of alite formation and ye’elimite decomposition in alite-ye’elimite cement clinker. Chem. Pap. 75, 5983–5993 (2021). https://doi.org/10.1007/s11696-021-01781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01781-x

Keywords

  • Calcium sulfoaluminate
  • Kinetics
  • Phosphorous slag
  • Activation energy
  • Phase composition