Altun IA (1999) Effect of CaF2 and MgO on sintering of cement clinker. Cem Concr Res 29(11):1847–1850
CAS
Article
Google Scholar
Atkins P, Paula J (2002) J physical chemistry, 7th edn. Oxford University, Oxford
Google Scholar
Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys 9(2):177–184
CAS
Google Scholar
Calos NJ, Kennard CHL, Whittaker AK, Davis RL (1995) Structure of calcium aluminate sulfate Ca4Al6O16S. J Solid State Chem 119(1):1–7
CAS
Article
Google Scholar
Canbek S, Shakouri STE (2020) Laboratory production of calcium sulfoaluminate cements with high industrial waste content. Cement and Concrete Composites 106:103475
CAS
Article
Google Scholar
Chen L, Wu ZQ, Wang C, Ouyang J, Xia XH (2012) Exploring the temperature-dependent kinetics and thermodynamics of immobilized glucose oxidase in microchip. Anal Methods 4(9):2831–2837
CAS
Article
Google Scholar
Chitvoranund N, Winnefeld F, Hargis CW, Sinthupinyo S, Lothenbach B (2017) Synthesis and hydration of alite-calcium sulfoaluminate cement. Adv Cem Res 29(3):101–111
Article
Google Scholar
Chromý S (1999) Mechanism and kinetics of the thermal decomposition of alite in refractory material based on cement clinker. ZKG Int 52:576–584
Google Scholar
Cuesta A, De la Torre AG, Losilla ER, Peterson VK, Rejmak P, Ayuela A, Frontera C, Aranda MAG (2013) Structure, atomistic simulations, and phase transition of stoichiometric Yeelimite. Chem Mater 25(9):1680–1687
CAS
Article
Google Scholar
Djuric M, Zivanovic B, Petrasinovic-Stojkanovic L, Ranogajec J (1992) Computerized thermodynamic analysis of reactions during sintering of CaO·Al2O3·SiO2 system. Cem Concr Res 22(1):139–148
CAS
Article
Google Scholar
Duvallet T, Robl T (2012) Production of alite-calcium sulfoaluminate- ferrite cements from coal and other industrial by-products. 2012 Word Of Coal Ash (WOCA) Conference
Erdoğan ST, Canbek (2020) Influence of production parameters on calcium sulfoaluminate cements. Constr Build Mater 239:117866
Article
CAS
Google Scholar
Ginstling VIB (1950) Concerning the diffusion kinetics of reactions in spherical particles. Russ J Appl Chem 23:1327–1338
CAS
Google Scholar
Hanein T, Glasser FP, Campbell Bannerman MN (2015) Thermodynamics of Portland Cement Clinkering. The 14th International Congress on the Chemistry of Cement (ICCC) 2015
Herfort D (2015) Chemistry of the clinker production process. J Chin Ceram Soc 43(10):1314–1323
CAS
Google Scholar
Hökfors B, Boström D, Viggh E, Backman R (2015) On the phase chemistry of Portland cement clinker. Adv Cem Res 27(1):50–60
Article
Google Scholar
Horkoss S, Lteif R, Rizk T (2010) Calculation of the C3A percentage in high sulfur clinker. Int J Anal Chem (4):5
Hu Y (2016) The preparation and composition analysis of alite-Ye’elimite with industrial wastes. Ceram Silik 60(3):179–187
CAS
Article
Google Scholar
Hu Y, Li W, Ma S, Wang Q, Zou H, Shen X (2018) The composition and performance of alite-ye’elimite clinker produced at 1300 °C. Cem Concr Res 107:41–48
CAS
Article
Google Scholar
Huang Y, Wang S, Hou P, Chen Y, Gong C, Lu L (2015) Mechanisms and kinetics of the decomposition of calcium barium sulfoaluminate. J Therm Anal Calorim 119(3):1731–1737
CAS
Article
Google Scholar
Johansen V (1973) Model for reaction between cao particles and portland cement clinker. J Am Ceram Soc 56(9):450–454
CAS
Article
Google Scholar
Juiphunthong P, Joyklad P (2019) Utilization of several industrial wastes as raw material for calcium sulfoaluminate cement. Materials 12(20):3319
Article
CAS
Google Scholar
Khawam A, Flanagan DR (2006) Basics and applications of solid-state kinetics: a pharmaceutical perspective. J Pharm Sci 95(3):472–498
CAS
PubMed
Article
Google Scholar
Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110(35):17315–28
CAS
PubMed
Article
Google Scholar
Khessaimi Y, Hafiane Y, Smith A, Trauchessec R, Diliberto C, Lecomte A (2018) Solid-state synthesis of pure ye’elimite. J Eur Ceram Soc 38(9):3401–3411
Article
CAS
Google Scholar
Khessaimi Y, Hafiane Y, Smith A (2019) Ye’elimite synthesis by chemical routes. J Eur Ceram Soc 39(4):1683–1695
Article
CAS
Google Scholar
Klemm WA, Jawed I, Holub KJ (1979) Effects of calcium fluoride mineralization on silicates and melt formation in portland cement clinker. Cem Concr Res 9(4):489–496
CAS
Article
Google Scholar
Li X, Zhang Y, Shen X, Wang Q, Pan Z (2014) Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide. Cem Concr Res 55:79–87
CAS
Article
Google Scholar
Li X, Shen X, Tang M (2014) Stability of tricalcium silicate and other primary phases in Portland cement clinker. Ind Eng Chem Res 53(5):1954–1964
CAS
Article
Google Scholar
Li X, Shen X, Xu J, Li X, Ma S (2015) Hydration properties of the alite–ye’elimite cement clinker synthesized by reformation. Constr Build Mater 99:254–259
Article
Google Scholar
Liu XC, Li YJ, Zhang N (2002) Influence of MgO on the formation of Ca3SiO5 and 3CaO center dot 3Al2O3center dot CaSO4 minerals in alite-sulphoaluminate cement. Cem Concr Res 32(7):1125–1129
CAS
Article
Google Scholar
Lu L, Li Q, Wang S, Cheng X (2012) Study on synthesis and performance of alite-strontium calcium sulfoaluminate cement. Adv Cem Res 24(4):187–192
CAS
Article
Google Scholar
Ma S, Shen X, Gong X, Zhong B (2006) Influence of CuO on the formation and coexistence of 3CaO·SiO2 and 3CaO·3Al2O3·CaSO4 minerals. Cem Concr Res 36(9):1784–1787
CAS
Article
Google Scholar
Ma B, Li X, Mao Y, Shen X (2013) Synthesis and characterization of high belite sulfoaluminate cement through rich alumina fly ash and desulfurization gypsum. Ceram-Silik 57(1):7–13
CAS
Google Scholar
Ma S, Snellings R, Li X, Shen X, Scrivener KL (2013) Alite-ye’elimite cement: synthesis and mineralogical analysis. Cem Concr Res 45:5–20
Article
CAS
Google Scholar
Ma S, Ge D, Li W, Hu Y, Xu Z, Shen X (2019) Reaction of Portland cement clinker with gaseous SO2 to form Alite-ye’elimite. Cem Concr Res 116:299–308
CAS
Article
Google Scholar
Mohan K, Glasser FP (1977) The thermal decomposition of Ca3SiO5 at temperatures below 1250°C: part 1. Pure C3S and the influence of excess CaO or Ca2SiO4. Cem Concr Res 7(1):1–7
CAS
Article
Google Scholar
Mohan K, Glasser FP (1977) The thermal decomposition of Ca3SiO5 at temperatures below 1250°C: Part 2. The influence of Mg, Fe, Al and Na oxides on the decomposition. Cem Concr Res 7(3):269–275
CAS
Article
Google Scholar
Morikawa H, Minato I, Tomita T, Iwai S (1975) Anhydrite: a refinement. Acta Crystallogr B 31(8):2164–2165
Article
Google Scholar
Mumme W (1995) Crystal structure of tricalcium silicate from a Portland cement clinker and its application to quantitative XRD analysis. Neues Jahr Buch Fur Mineralogie Monatshefte 1995:145–160
Google Scholar
Noirfontaine MND, Tusseau-Nenez S, Signes-Frehel M, Gasecki G, Girod-Labianca C (2009) Effect of phosphorus impurity on tricalcium silicate T1: from synthesis to structural characterization. J Am Ceram Soc 92(10):2337–2344
Article
CAS
Google Scholar
Nurse RW (1952) The effect of phosphate on the constitution and hardening of portland cement. J Appl Chem 2(12):708–716
CAS
Article
Google Scholar
Odler I, Zhang H (1996) Investigations on high SO3 portland clinkers and cements I. Clinker synthesis and cement preparation. Cem Concr Res 26(9):1307–1313
CAS
Article
Google Scholar
Pedrosa ET, Boeck L, Putnis CV, Puntis A (2017) The replacement of a carbonate rock by fluorite: kinetics and microstructure. Am Miner 102(1):126–134
Article
Google Scholar
Provis J (2016) On the use of the Jander equation in cement hydration modelling. Rilem Tech Lett 1:62–66
Article
Google Scholar
Puertas F, Varela MTB, Molina SG (1995) Kinetics of the thermal decomposition of C4A3S̄ in air. Cem Concr Res 25(3):572–580
CAS
Article
Google Scholar
Ravaszová S, Dvořák K (2020) Development of crystallinity of triclinic polymorph of tricalcium silicate. Materials 13(17):3734
PubMed Central
Article
CAS
Google Scholar
Skalamprinos S, Galan I, Hanein T, Glasser F (2018) Enthalpy of formation of ye’elimite and ternesite. J Therm Anal Calorim 131(3):2345–2359
CAS
Article
Google Scholar
Staněk T, Sulovský P (2009) The influence of phosphorous pentoxide on the phase composition and formation of Portland clinker. Mater Charact 60(7):749–755
Article
CAS
Google Scholar
Taylor HFW (1997) Cement chemistry. Thomas Telford, USA
Book
Google Scholar
Telschow S (2012) Clinker burning kinetics and mechanism. Department of Chemical and Biochemical Engineering Combustion and Harmful Emission Control Research Centre Technical University of Denmark. 2012 PhD thesis
Vattulainen I, Merikoski J, Ala-Nissila T, Ying SC (1997) Non-arrhenius behavior of surface diffusion near a phase transition boundary. Phys Rev Lett 79(2):257–260
CAS
Article
Google Scholar
Wang J-P, Erdenebold U (2020) A study on reduction of copper smelting slag by carbon for recycling into metal values and cement raw material. Sustainability 12(4):1421
CAS
Article
Google Scholar
Wang Y, Thomson WJ (1996) Kinetic studies of tricalcium silicate formation from sol-gel precursors. J Mater Sci 31(5):1319–1325
CAS
Article
Google Scholar
Wang W, Chen X, Chen Y, Dong Y, Ma C (2011) Calculation and Verification for the Thermodynamic Data of 3CaO·3Al2O3·CaSO4. Chin J Chem Eng 19(3):489–495
CAS
Article
Google Scholar
Wang Q, Ye Z, Hu Y, Wei S (2021) Effect of gypsum dosage on the hydration and strength of alite-ye’elimite cement synthesized at 1300 °C. Constr Build Mater 287:123063
CAS
Article
Google Scholar
Xuan H, Lu L, Liu P, Cheng X (2008) Property of alite-barium calcium sulphoaluminate cement. J Chin Ceram Soc 36:209–214
CAS
Google Scholar
Yamnova NA, Zubkova NV, Eremin NN, Zadov AE, Gazeev VM (2011) Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallogr Rep 56(2):210–220
CAS
Article
Google Scholar
Yang T, Li R, Zhou J, Cen K (2006) Formation kinetics of high-temperature phase sulphoaluminate. J Chem Ind Eng 57(10):2327–2331
CAS
Google Scholar
Zhang Y, Li X, Shen X (2017) Kinetics of calcium sulfoaluminate with 1% iron oxide by isothermal and isoconversional methods. Adv Cem Res 29(8):336–346
Article
Google Scholar