Skip to main content
Log in

Mechanisms and kinetics of the decomposition of calcium barium sulfoaluminate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To control the manufacturing process of the new clinker system of belite-calcium barium sulfoaluminate cement, the mechanisms and kinetics of the decomposition of calcium barium sulfoaluminate (2.75CaO·1.25BaO·3Al2O3·SO3, Ca2.75Ba1.25Al6$O16, C2.75B1.25A3$) were investigated by SEM–EDS (scanning electron microscope–energy dispersive spectroscope), DSC–TG (differential scanning calorimetry–thermogravimetry), and X-ray diffraction analyses. Isothermal decomposition kinetics was studied by the model fitting and differential isoconversional method. The results show that the C2.75B1.25A3$ starts to decompose at around 1,370 °C, and generates mainly BaO·Al2O3, 3CaO·Al2O3, and SO3. The model fitting result indicates that the decomposition of C2.75B1.25A3$ is controlled by the interfacial chemical reaction mechanism and that the decomposition kinetics is well characterized by the spherical model equation R 3 = 1 − (1 − α)1/3 (R 3 is the equation symbol, and α is the degree of decomposition) with an apparent activation energy of 518 kJ mol−1. The results of the differential isoconversional method match the results of the model fitting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kacimi L, Simon-Masseron A, Salem S, Ghomari A, Derriche Z. Synthesis of belite cement clinker of high hydraulic reactivity. Cem Concr Res. 2003;39:559–65.

    Article  Google Scholar 

  2. Popescu CD, Muntean M, Sharp JH. Industrial trial production of low energy belite cement. Cem Concr Compos. 2003;25:689–93.

    Article  CAS  Google Scholar 

  3. Chen YL, Shih PH, Chiang LC, Chang YK, Lu HC, Chang JE. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge. J Hazard Mater. 2009;170:443–8.

    Article  CAS  Google Scholar 

  4. Kacimi L, Cyr M, Clastres P. Synthesis of α′-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure. J Hazard Mater. 2010;181:181–6.

    Article  Google Scholar 

  5. Worrell E, Price L, Martin N, Hendricks C, Meida LO. Ann Rev Energy Environ Carbon dioxide emissions from the global cement industry Ann Rev. Energy Environ. 2001;26:303–29.

    Google Scholar 

  6. Benhelal E, Zahedi G, Shamsaei E, Bahadori A. Global strategies and potentials to curb CO2 emissions in cement industry. J Clean Prod. 2013;52:142–61.

    Article  Google Scholar 

  7. García-Díaz I, Palomo JG, Puertas F. Belite cements obtained from ceramic wastes and the mineral pair CaF2/CaSO4. Cem Concr Compos. 2011;33:1063–70.

    Article  Google Scholar 

  8. Cuesta A, Losilla ER, Miguel AG, Sanz J, De la Torre AG. Reactive belite stabilization mechanisms by boron-bearing dopants. Cem Concr Res. 2012;42:598–606.

    Article  CAS  Google Scholar 

  9. Yang L, Yan Y, Hu ZH, Xie XL. Utilization of phosphate fertilizer industry waste for belite-ferroaluminate cement production. Constr Build Mater. 2013;38:8–13.

    Article  Google Scholar 

  10. Iacobescu RI, Koumpouri D, Pontikes Y, Saban R, Angelopoulos GN. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements. J Hazard Mater. 2011;196:287–94.

    Article  CAS  Google Scholar 

  11. Pimraksa K, Hanjitsuwan S, Chindaprasirt P. Synthesis of belite cement from lignite fly ash. Ceram Int. 2009;35:2415–25.

    Article  CAS  Google Scholar 

  12. Cubero JMA, De la Torre AG, álvarez-Pinazo G. Active iron-rich belite sulfoaluminate cements: clinkering and hydration. Environ Sci Technol. 2010;44:855–62.

    Article  Google Scholar 

  13. Cheng X, Chang J, Lu LC, Liu FT, Teng B. Study of Ba-bearing calcium sulphoaluminate minerals and cement. Cem Concr Res. 2000;30:77–81.

    Article  CAS  Google Scholar 

  14. Quillin K. Performance of belite-sulfoaluminate cements. Cem Concr Res. 2001;31:1341–9.

    Article  CAS  Google Scholar 

  15. Lu LC, Yu LB, Chang J, Cheng X, Liu HX, Yuan RZ. Effect of CaF2 on the formation course of barium-calcium sulphoaluminate. J Chin Ceram Soc. 2005;33:1396–400.

    CAS  Google Scholar 

  16. Huang YB, Wang SD, Gong CC, Zhao YT, Lu LC. Study on isothermal formation dynamics of calcium barium sulphoaluminate mineral. J Inorg Organomet Polym. 2013;23:1172–6.

    Article  CAS  Google Scholar 

  17. Cheng X, Chang J, Lu LC, Liu FT, Teng B. Study on the hydration of Ba-bearing calcium sulphoaluminate in the presence of gypsum. Cem Concr Res. 2004;34:2009–13.

    Article  CAS  Google Scholar 

  18. Chang J, Cheng X, Liu FT, Lu LC, Teng B. Influence of fluorite on the Ba-bearing sulphoaluminate. Cem Concr Res. 2001;31:213–6.

    Article  CAS  Google Scholar 

  19. Chen IA, Hargis CW, Juenger MCG. Understanding expansion in calcium sulfoaluminate-belite cements. Cem Concr Res. 2012;42:51–60.

    Article  CAS  Google Scholar 

  20. Morsli K, de la Torre AG, Zahir M, Aranda MAG. Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers. Cem Concr Res. 2007;37:639–46.

    Article  CAS  Google Scholar 

  21. Ma L, Zhao QL, Yao CK, Zhou MK. Impact of welan gum on tricalcium laminategypsum hydration. Mater Charact. 2012;64:88–95.

    Article  CAS  Google Scholar 

  22. Sergey V, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  Google Scholar 

  23. Brown ME. Stocking in the kinetic cupboard. J Therm Anal Calorim. 2005;82:665–9.

    Article  CAS  Google Scholar 

  24. Jose John M, Muraleedharan K, Kannan MP, Ganga Devi T. Effect of semiconducting metal oxide additives on the kinetics of thermal decomposition of sodium oxalate under isothermal conditions. Thermochim Acta. 2012;534:72–6.

    Google Scholar 

  25. Khayati GR, Janghorban K, Shariat MH. Isothermal kinetics of mechanochemically and thermally synthesized Ag from Ag2O. Trans Nonferrous Met Soc China. 2012;22:935–42.

    Article  CAS  Google Scholar 

  26. Tan WL, Abu Bakar M, Abu Baka NHH. Thermal and kinetic studies of epoxidized natural rubber in lithium salts-epoxidized natural rubber polymer electrolytes. J Therm Anal Calorim. 2014;117:1111–22.

    Article  CAS  Google Scholar 

  27. Koga N, Takemoto S, Okada S, Tanaka H. A kinetic study of the thermal decomposition of iron (III) hydroxide oxides. Part 1. α-FeO(OH) in banded iron formations. Thermochim Acta. 1995;254:193–207.

    Article  CAS  Google Scholar 

  28. Koga N. Kinetic analysis of thermoanalytical data by extrapoiating to infinite temperature. Thermochim Acta. 1995;258:145–59.

    Article  CAS  Google Scholar 

  29. Luo YS, Zhang JY, Zhou TP. Models for kinetics analyses of solid-to-solid reactions and their applications. Mater Rev. 2000;14:6–7.

    Google Scholar 

  30. Koga N, Tanaka H. A physico-geometric approach to the kinetics of solid-state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids. Thermochim Acta. 2002;388:41–61.

    Article  CAS  Google Scholar 

  31. Ma SH, Shen XD, Chen L, Huang YP, Ji B. Research on the decomposition kinetics of calcium sulphoaluminate. Bull Chin Ceram Soc. 2010;3:701–4.

    Google Scholar 

  32. Li XR, Zhang Y, Shen XD, Qang QQ, Pan ZG. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide. Cem Concr Res. 2014;55:79–87.

    Article  CAS  Google Scholar 

  33. Farjas J, Roura P. Isoconversional analysis of solid state transformations. J Therm Anal Calorim. 2011;105:757–66.

    Article  CAS  Google Scholar 

  34. Roduit B, Folly P, Berger B, Mathieu J, Sarbach A, Andres H, Ramin M, Vogelsange B. Evaluating SADT by advanced kinetics-based simulation approach. J Therm Anal Calorim. 2008;93:153–61.

    Article  CAS  Google Scholar 

  35. Alves APM, Araujo AS, Bezerra FA, Sousa KS, Lima SJG, Fonseca MG. Kinetics of dehydration and textural characterizations of selectively leached vermiculites. J Therm Anal Calorim. 2014;117:19–26.

    Article  CAS  Google Scholar 

  36. Yuzhan L, Michael RK. Cure kinetics of liquid crystalline epoxy resins based on biphenyl Mesogen. J Therm Anal Calorim. 2014;117:481–8.

    Article  Google Scholar 

Download references

Acknowledgements

The above study was supported by the National Natural Science Foundations of China (No. 51272091 and No. 51102113). In addition, this study was supported by the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingchao Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Wang, S., Hou, P. et al. Mechanisms and kinetics of the decomposition of calcium barium sulfoaluminate. J Therm Anal Calorim 119, 1731–1737 (2015). https://doi.org/10.1007/s10973-014-4340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4340-z

Keywords

Navigation