Skip to main content
Log in

Effect of water release on thermal properties of polyaniline

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Conducting polyaniline (PANI) was studied by thermal expansion measurement, thermogravimetric analysis and by electrical conductivity measurement. Relative elongation and coefficient of thermal expansion (CTE) were determined from room temperature to 60 °C. Various temperature profiles were used. During heating, the treatment of samples at a constant temperature higher than the room temperature, or evacuation, water was released from the samples. Water release was detected by mass and thermogravimetric analysis. Water release was connected with shrinkage of the PANI samples and apparent negative CTE in the first thermal cycle. In the following thermal cycles, it increased and reached a positive value. CTE of PANI attained values in the range of −30 × 10−6 K−1 up to 20 × 10−6 K−1 in dependence on water content in the sample before measurement and on experimental conditions of measurement. Irreversible shrinkage of the polymer was the largest in the first thermal cycle. Water release exhibited a strong time and temperature dependence, and it was only partially reversible. The electrical conductivity was measured by a four-point van der Pauw method. Relative electrical conductivity decreased with amounts of water release. Relative decrease of electrical conductivity reached as far as 20% after evacuation 7 h at the room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alix A, Lemoine V, Nechtschein M, Travers JP, Menardo C (1989) Water absorption study in polyaniline. Synth Met 29:E457–E462. doi:10.1016/0379-6779(89)90333-0

    Article  CAS  Google Scholar 

  • Angelopoulos M, Ray A, MacDiarmid AG, Epstein AJ (1987) Polyaniline: processability from aqeous solutions and effect of water vapour on conductivity. Synth Met 21:21–30. doi:10.1016/0379-6779(87)90062-2

    Article  CAS  Google Scholar 

  • Ansari R, Price WE, Wallace GG (1996) Effect of thermal treatment on the electroactivity of polyaniline. Polymer 37:917–923. doi:10.1016/0032-3861(96)87273-9

    Article  CAS  Google Scholar 

  • Baughman RH (1973) Negative thermal expansion in crystalline linear polymers. J Chem Phys 58:2976–2983. doi:10.1063/1.1679607

    Article  CAS  Google Scholar 

  • Byshkin MS, Correa A, Buonocore F, Di Matteo A, Milano G (2013) A united grand canonical Monte Carlo study of partially doped polyaniline. J Chem Phys 139:244906(1–9). doi:10.1063/1.48484697

  • Byshkin MS, Buonocore F, Di Matteo A, Milano G (2015) A unified bottom up multiscale strategy to model gas sensors based on conductive polymers. Sens Actuators B 211:42–51. doi:10.1016/j.snb.2015.01.039

    Article  CAS  Google Scholar 

  • Calero S, Álvarez PG (2014) Hydrogen bonding of water confined in zeolites and their zeolitic imidazolate framework counterparts. RSC Adv 4:29571–29580. doi:10.1039/C4RA01508H

    Article  CAS  Google Scholar 

  • Calero C, Gordillo MC, Martí J (2013) Size effect on water adsorbed on hydrophobic probes at the nanometric scale. J Chem Phys 38:214702 (1–8). doi:10.1063/1.4807092

  • Canales M, Aradilla D, Aleman C (2011) Water absorption in polyaniline emeraldine base. J Polym Sci Part B Polym Phys 49:13221331. doi:10.1002/polb.22300

    Article  Google Scholar 

  • Cardoso MJR, Lima MFS, Lenz DM (2007) Polyaniline synthetized with funtionalized sulfonic acids for blends manufacture. Mater Res 10:425–429. doi:10.1002/pi.4131

    Article  CAS  Google Scholar 

  • Carey T, Corma A, Rey F, Tang CC, Hriljac JA, Anderson PA (2012) The effect of extra framework species on the intrinsic negative thermal expansion property of zeolites with the LTA topology. Chem Commun 48:5829–5831. doi:10.1063/1.4807092

    Article  CAS  Google Scholar 

  • Davis GT, Eby RK, Colson JP (1970) Thermal expansion of polyethylene unit cell: effect of laminar thickness. J Appl Phys 41:4316–4326. doi:10.1063/1.1658462

    Article  CAS  Google Scholar 

  • Hartwig G (1994) Polymer properties at rooms and cryogenic temperatures. Plenum Press, New York. doi:10.1002/pi.1995.210380316

  • Kobayashi Y, Keller A (1970) The temperature coefficient of the c lattice parameter of polyethylene; an example of thermal shrinkage along the chain direction. Polymer 11:114–117. doi:10.1016/0032-3861(70)90030-3

    Article  CAS  Google Scholar 

  • Lin JS (1999) Effect polypyrrole deposition of carbon fiber on thermal expansion of carbonfiber-epoxy composites. J Polym Res 6:237–242. doi:10.1007/S10965-0093-0

    Article  CAS  Google Scholar 

  • Lubentsov BZ, Timofeeva ON, Khindekel ML (1991) Conducting polymer interaction with gaseous substances II. PANI-H2O, PANI-NH3. Synth Met 45:235–240. doi:10.1016/0379-6779(91)91808-N

    Article  CAS  Google Scholar 

  • Lubentsov B, Timofeeva O, Saratovskikh S, Krinichnyi V, Pelekh A, Dmitrenko V, Khidekel M (1992) The study of conducting polymer interaction with gaseous substances IV. The water content influence on polyaniline crystal structure and conductivity. Synth Met 47:187–192. doi:10.1061/0379-6779(92)90386-W

    Article  CAS  Google Scholar 

  • MacDiarmid AG (1996) Polyaniline and polypyrrole: where are we headed? Synth Met 84:27–34. doi:10.1016/S0379-6779(97)80658-3

    Article  Google Scholar 

  • Matveeva ES, Diaz Calleja R, Parkhutik VP (1995) Thermogravimetric and calorimetric studies of water absorbed in polyaniline. Synth Met 72:105–110. doi:10.1016/0379-6779(94)02335-V

    Article  CAS  Google Scholar 

  • Moosvi SK, Majid K, Ara T (2016) Synthesis and characterization of PPY/K[Fe(CN)3(OH)(en)] nanocomposite: study of photocatalytic, sorption, electrical, and thermal properties. J Appl Polym Sci. doi:10.1002/app43487

    Google Scholar 

  • Ostwald MM, Qi B, Pellrgino J, Fadeev AG, Norris ID, Tsotsin TT, Sahimi M, Mattes BR (2006) Water sorption of acid-doped polyaniline powders and hollow fibers: equilibrium and kinetic response. Ind Eng Chem Res 45:6021–6031. doi:10.1021/ie060163h

    Article  Google Scholar 

  • Rodrigues PC, de Souza GP, Da Motta Neto JD, Akcelrud L (2002) Thermal treatment and dynamic mechanical thermal properties of polyaniline. Polymer 43:5493–5499. doi:10.1016/S0032-3861(02)00401-9

    Article  CAS  Google Scholar 

  • Rudajevová A, Varga M, Prokeš J, Kopecká J, Stejskal J (2015) Thermal properties of conducting polypyrrole nanotubes. Acta Phys Pol A 128:730–736. doi:10.12693/APhysPol/A.128.730

    Article  Google Scholar 

  • Shen X, Viney Ch, Johnson ER, Wang Ch, Lu JQ (2013) Large negative thermal expansion of a polymer driven by a submolecular conformational change. Nat Chem 5:1035–1045. doi:10.1038/nchem.1780

    Article  CAS  Google Scholar 

  • Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer. Pure Appl Chem 74:857–867. doi:10.1351/pac200274050857

    Article  CAS  Google Scholar 

  • Stejskal J, Trchová M, Bober P, Humpolíček P, Kašpárková V, Sapurina I, Shishov MA, Varga M (2015) Conducting Polymers: Polyaniline. Encycl Polym Sci Technol 1–44. doi:10.1002/0471440264.pst640

  • Tsavalas JG, Sundberg DC (2010) Hydroplasticization of polymers: model predictions and application to emulsion polymers. Langmuir 26:6960–6966. doi:10.1021/ia9042.11e

    Article  CAS  Google Scholar 

  • Wassermann EF (1990) Invar: moment-volume instabilities in transition metals and alloys. In: Buschow KHJ, Wohlfarth EP (eds) Ferromagnetic Materials (Chap. 3), vol 5. Elsevier, North-Holland, Amsterdam, pp 237–322

Download references

Acknowledgements

Experiments have been performed in the Magnetism and Low Temperature Laboratories (http://mltl.eu/) within the program of the Czech Research Infrastructures (LM 2011025). The financial support of the Czech Science Foundation (13-00270S, P108/11/1298) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Rudajevová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudajevová, A., Prokeš, J. & Varga, M. Effect of water release on thermal properties of polyaniline. Chem. Pap. 71, 393–400 (2017). https://doi.org/10.1007/s11696-016-0104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0104-5

Keywords

Navigation