Skip to main content
Log in

Preparation and coating properties of alkyd polyol-based autoxidizable waterborne polyurethane dispersions with high fatty acid content, long storage stability, and low viscosity

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In order to increase the concentrations of bio-based alkyd polyols (or fatty acids) in self-crosslinking polyurethane dispersions, herein, a series of novel alkyd polyol-based autoxidizable waterborne polyurethane dispersions (AWPUDs) with different fatty acid contents, long storage stability, and low viscosity were successfully prepared by adding dimethylol propionic acid (DMPA) self-emulsifier in the late stage of their synthesis. They and their corresponding curing films were characterized by Fourier transform infrared spectroscopy (FTIR), particle size analysis, rheology measurement, storage stability evaluation, thermogravimetric analysis, dynamic thermomechanical analysis (DMA), etc. The results showed that the addition process of DMPA played a critical role for the excellent features of AWPUDs. Additionally, the crosslinking density, gel contents, and water contact angles of AWPUD films increased with the enlarged fatty acid contents, whereas their water uptake capability decreased. Moreover, a series of AWPUD coatings were prepared, and their properties like drying times, hardness development, pencil hardness, adhesion capability, impact resistance, flexibility, and water resistances were all effectively improved with the increased fatty acid contents, significantly superior to those of waterborne alkyd coatings and waterborne polyurethane coatings without fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

References

  1. Chardon, F, Denis, M, Negrell, C, Caillol, S, “Hybrid Alkyds, the Glowing Route to Reach Cutting-Edge Properties?” Prog. Org. Coat., 151 106025. https://doi.org/10.1016/j.porgcoat.2020.106025 (2021)

    Article  CAS  Google Scholar 

  2. Yousefi, AA, Bigdeli, E, “Synthesis of Water-Based Alkyd Resins.” J. Color Sci. Tech., 1 (1) 25–40 (2007)

    Google Scholar 

  3. Huang, Q, Liu, C, Chen, S, Bai, G, An, Q, Cao, J, Zheng, S, Liang, Y, Xiang, B, “Effects of Formulation on Set-to-Touch Time of Waterborne Alkyd Resin by Uniform Design.” Prog. Org. Coat., 87 189–196. https://doi.org/10.1016/j.porgcoat.2015.06.001 (2015)

    Article  CAS  Google Scholar 

  4. Jones, F, Nichols, M, Pappas, SP, Organic Coatings: Science and Technology, 4th ed. Wiley. https://doi.org/10.1002/9781119337201 (2017)

    Book  Google Scholar 

  5. Dhoke, S, Sinha, TJM, Dutta, P, Khanna, A, “Formulation and Performance Study of Low Molecular Weight, Alkyd-Based Waterborne Anticorrosive Coating on Mild Steel.” Prog. Org. Coat., 62 (2) 183–192. https://doi.org/10.1016/j.porgcoat.2007.10.008 (2008)

    Article  CAS  Google Scholar 

  6. Ifijen, IH, Maliki, M, Odiachi, IJ, Aghedo, ON, “Review on Solvents Based Alkyd Resins and Water Borne Alkyd Resins: Impacts of Modification on Their Coating Properties.” Chem. Africa, 5 (2) 211–225. https://doi.org/10.1007/s42250-022-00318-3 (2022)

    Article  CAS  Google Scholar 

  7. Mańczyk, K, Szewczyk, P, “Highly Branched High Solids Alkyd Resins.” Prog. Org. Coat., 44 (2) 99–109. https://doi.org/10.1016/S0300-9440(01)00249-1 (2002)

    Article  Google Scholar 

  8. Aigbodion, AI, Okieimen, FE, Obazee, EO, Bakare, IO, “Utilisation of Maleinized Rubber Seed Oil and Its Alkyd Resin as Binders in Water-Borne Coatings.” Prog. Org. Coat., 46 (1) 28–31. https://doi.org/10.1016/S0300-9440(02)00181-9 (2003)

    Article  CAS  Google Scholar 

  9. Acar, I, Bal, A, Güçlü, G, “The Use of Intermediates Obtained from Aminoglycolysis of Waste Poly(ethylene Terephthalate) (PET) for the Synthesis of Water-Reducible Alkyd Resin.” Can. J. Chem., 91 (5) 357–363. https://doi.org/10.1139/cjc-2012-0370 (2013)

    Article  CAS  Google Scholar 

  10. Bulak, E, Acar, I, “The Use of Aminolysis, Aminoglycolysis, and Simultaneous Aminolysis–Hydrolysis Products of Waste PET for Production of Paint Binder.” Polym. Eng. Sci., 54 (10) 2272–2281. https://doi.org/10.1002/pen.23773 (2014)

    Article  CAS  Google Scholar 

  11. Güçlü, G, “Alkyd Resins Based on Waste PET for Water-Reducible Coating Applications.” Polym. Bull., 64 739–748. https://doi.org/10.1007/s00289-009-0166-4 (2010)

    Article  CAS  Google Scholar 

  12. Kartaloğlu, N, Akçin, SE, Eren, M, Delibas, A, “Waterborne Hybrid (Alkyd/Styrene Acrylic) Emulsion Polymers and Exterior Paint Applications.” J. Coat. Technol. Res.https://doi.org/10.1007/s11998-023-00767-6 (2023)

    Article  Google Scholar 

  13. Ouyang, S, Lin, Z, Cao, L, Ding, Y, Shen, L, “Preparation of Excellent-Water-Resistance Water-Borne Alkyd/Acrylic Hybrid Coatings with Varied Maleic Anhydride Content.” Prog. Org. Coat., 161 106537. https://doi.org/10.1016/j.porgcoat.2021.106537 (2021)

    Article  CAS  Google Scholar 

  14. Zeng, Q, Xue, S, Li, J, Jiang, W, Ding, Y, Shen, L, “Preparation of Bio-Based Air-Drying Water-Borne Polyurea Coatings with Excellent Coating Properties and Anticorrosive Performance.” Prog. Org. Coat., 171 107040. https://doi.org/10.1016/j.porgcoat.2022.107040 (2022)

    Article  CAS  Google Scholar 

  15. Athawale, V, Nimbalkar, R, “Emulsifyable Air Drying Urethane Alkyds.” Prog. Org. Coat., 67 (1) 66–71. https://doi.org/10.1016/j.porgcoat.2009.09.017 (2010)

    Article  CAS  Google Scholar 

  16. Patil, D, Phalak, G, Mhashe, S, “Design and Synthesis of Bio-Based Epoxidized Alkyd Resin for Anti-corrosive Coating Application.” Iran. Polym. J., 27 (10) 709–719. https://doi.org/10.1007/s13726-018-0646-1 (2018)

    Article  CAS  Google Scholar 

  17. Pellegrene, B, Soucek, MD, “Effect of Humidity on Curing of Alkoxysilane-Functionalized Alkyd Coatings.” J. Coat. Technol. Res., 18 (6) 1543–1555. https://doi.org/10.1007/s11998-021-00494-w (2021)

    Article  CAS  Google Scholar 

  18. Kurt, İ, Acar, I, Güçlü, G, “Preparation and Characterization of Water Reducible Alkyd Resin/Colloidal Silica Nanocomposite Coatings.” Prog. Org. Coat., 77 (5) 949–956. https://doi.org/10.1016/j.porgcoat.2014.01.017 (2014)

    Article  CAS  Google Scholar 

  19. Elfadel, RG, Refat, HM, Abdelwahab, H, Salem, SS, Awad, MA, Abdel Reheim, MAM, “Synthesis of Modified Poly(Ester-Amide) and Alkyd Resins Based on Phenolic and Schiff Base Compounds to Study Their Biological and Insecticide Activity for Surface Coating Applications.” Pigment Resin Technol. https://doi.org/10.1108/PRT-03-2023-0031 (2023)

    Article  Google Scholar 

  20. Kivit, PJJ, Aramendia, E, Cabrera, AA, Ríos, LM, “Water-Based Coatings Based on Mixtures of Acrylic Dispersions and Alkyd Emulsions.” Macromol. Symp., 283–284 290–299. https://doi.org/10.1002/masy.200950933 (2009)

    Article  CAS  Google Scholar 

  21. Yousefi, AA, Pishvaei, M, Yousefi, A, “Preparation of Water-Based Alkyd/Acrylic Hybrid Resins.” Prog. Color Color. Coat., 4 15–25 (2011)

    Google Scholar 

  22. Saravari, O, Phapant, P, Pimpan, V, “Synthesis of Water-Reducible Acrylic–Alkyd Resins Based on Modified Palm Oil.” J. Appl. Polym. Sci., 96 (4) 1170–1175. https://doi.org/10.1002/app.21009 (2005)

    Article  CAS  Google Scholar 

  23. Akgün, N, Büyükyonga, ÖN, Acar, I, Güçlü, G, “Synthesis of Novel Acrylic Modified Water Reducible Alkyd Resin: Investigation of Acrylic Copolymer Ratio Effect on Film Properties and Thermal Behaviors.” Polym. Eng. Sci., 56 (8) 947–954. https://doi.org/10.1002/pen.24324 (2016)

    Article  CAS  Google Scholar 

  24. Büyükyonga, ÖN, Akgün, N, Acar, I, Güçlü, G, “Synthesis of Four-Component Acrylic-Modified Water-Reducible Alkyd Resin: Investigation of Dilution Ratio Effect on Film Properties and Thermal Behaviors.” J. Coat. Technol. Res., 14 117–128. https://doi.org/10.1007/s11998-016-9835-z (2017)

    Article  CAS  Google Scholar 

  25. Büyükyonga, ÖN, Akgün, N, Acar, I, Güçlü, G, “The Usage of Novel Acrylic-Modified Water-Reducible Alkyd Resin Obtained from Post-consumer PET Bottles in Water-Based Paint Formulation.” J. Mater. Cycles Waste Manag., 22 187–196. https://doi.org/10.1007/s10163-019-00929-y (2020)

    Article  CAS  Google Scholar 

  26. Wicks, DA, Wicks, ZW, “Autoxidizable Urethane Resins.” Prog. Org. Coat., 54 (3) 141–149. https://doi.org/10.1016/j.porgcoat.2004.12.006 (2005)

    Article  CAS  Google Scholar 

  27. Zafar, F, Ghosal, A, Sharmin, E, Chaturvedi, R, Nishat, N, “A Review on Cleaner Production of Polymeric and Nanocomposite Coatings Based on Waterborne Polyurethane Dispersions from Seed Oils.” Prog. Org. Coat., 131 259–275. https://doi.org/10.1016/j.porgcoat.2019.02.014 (2019)

    Article  CAS  Google Scholar 

  28. Tennebroek, R, Casteren, I, Swaans, R, van der Slot, S, Stals, P, Tuijtelaars, B, Koning, C, “Wate-Based Polyurethane Dispersions.” Polym. Int., 68 (5) 832–842. https://doi.org/10.1002/pi.5627 (2018)

    Article  CAS  Google Scholar 

  29. Mucci, VL, Hormaiztegui, MEV, Amalvy, JI, Aranguren, MI, “Formulation, Structure and Properties of Waterborne Polyurethane Coatings: A Brief Review.” J. Adhes. Sci. Technol. https://doi.org/10.1080/01694243.2023.2240587 (2023)

    Article  Google Scholar 

  30. Deflorian, F, Fedel, M, DiGianni, A, Bongiovanni, R, Turri, S, “Corrosion Protection Properties of New UV Curable Waterborne Urethane Acrylic Coatings.” Corros. Eng. Sci. Technol., 43 (1) 81–86. https://doi.org/10.1179/174327808X286194 (2008)

    Article  CAS  Google Scholar 

  31. Acar, I, Orbay, M, “Aminoglycolysis of Waste Poly(Ethylene Terephthalate) with Diethanolamine and Evaluation of the Products as Polyurethane Surface Coating Materials.” Polym. Eng. Sci., 51 (4) 746–754. https://doi.org/10.1002/pen.21885 (2011)

    Article  CAS  Google Scholar 

  32. Çavuşoğlu, FC, Acar, I, “Synthesis of PET-Based Urethane-Modified Alkyd Resins from Depolymerization Intermediates of Post-consumer PET Bottles: Coating Properties and Thermal Behaviors.” J. Coat. Technol. Res., 20 (2) 741–761. https://doi.org/10.1007/s11998-022-00705-y (2023)

    Article  CAS  Google Scholar 

  33. Villada, Y, Inciarte, H, Gomez, C, Cardona, S, Orozco, LM, Estenoz, D, Rios, L, “Alkyd-Urethane Resins Based on Castor Oil: Synthesis, Characterization and Coating Properties.” Prog. Org. Coat., 180 107556. https://doi.org/10.1016/j.porgcoat.2023.107556 (2023)

    Article  CAS  Google Scholar 

  34. Gündüz, G, Idlibi, Y, Akovali, G, “Oil Modified and Waterborne Polyurethane Resin.” J. Coat. Technol. Res., 74 59–62. https://doi.org/10.1007/BF02697968 (2002)

    Article  Google Scholar 

  35. Athawale, VD, Nimbalkar, RV, “Novel Urethane/Acrylic Hybrid Emulsions for VOC Compliant Coatings.” Pigment Resin Technol., 40 (3) 181–190. https://doi.org/10.1108/03699421111130450 (2011)

    Article  CAS  Google Scholar 

  36. Eckhoff, PS, “Chemistry and Process for a Stain Resistant Aqueous House Paint Free of Heavy Metals.” U.S. Patent 3,919,145 (1975), https://www.freepatentsonline.com/3919145.html

  37. Fong, JJ, “Waterborne Maleinized Polybutadiene Emulsion Coating Composition.” U.S Patent 5,552,228 (1996), https://www.freepatentsonline.com/5552228.html

  38. Williams, RC, Rogemoser, DR, “Waterborne-Dispersible Urethane Polymers.” U.S. Patent 4,268,426 (1981), https://www.freepatentsonline.com/4268426.html

  39. Treasurer, UY, “Water-Dispersible Poly(Urethane-Urea) Compositions.” U.S. Patent 5,504,145 (1996), https://www.freepatentsonline.com/5504145.html

  40. Blum, H, Gertzmann, R, Irle, C, Guiteras, M, Garcia Martinez, JM, “Polyurethane-Modified Alkyd Resin Dispersions." U.S. Patent Application 20110236667, https://www.freepatentsonline.com/y2011/0236667.html

  41. Patel, A, Patel, C, Patel, MG, Patel, M, Dighe, A, “Fatty Acid Modified Polyurethane Dispersion for Surface Coatings: Effect of Fatty Acid Content and Ionic Content.” Prog. Org. Coat., 67 (3) 255–263. https://doi.org/10.1016/j.porgcoat.2009.11.006 (2010)

    Article  CAS  Google Scholar 

  42. Patel, AN, Patel, MM, “Influence of Compositional Variables on the Morphological and Dynamic Mechanical Behavior of Fatty Acid Based Self-crosslinking Poly(Urethane Urea) Anionomers.” Prog. Org. Coat., 74 (3) 443–452. https://doi.org/10.1016/j.porgcoat.2012.01.008 (2012)

    Article  CAS  Google Scholar 

  43. Schlarb, B, Rau, MG, Haremza, S, “Hydroresin Dispersions: New Emulsifier Free Binders for Aqueous Coatings.” Prog. Org. Coat., 26 (2–4) 207–215. https://doi.org/10.1016/0300-9440(95)00579-X (1995)

    Article  CAS  Google Scholar 

  44. Chaudhari, A, Kulkarni, R, Mahulikar, P, Sohn, D, Gite, V, “Development of PU Coatings from Neem Oil Based Alkyds Prepared by the Monoglyceride Route.” J. Am. Chem. Soc., 92 (5) 733–741. https://doi.org/10.1007/s11746-015-2642-3 (2015)

    Article  CAS  Google Scholar 

  45. Saalah, S, Abdullah, LC, Aung, MM, Salleh, MZ, Biak, DRA, Basri, M, Jusoh, ER, Mamat, S, “Colloidal Stability and Rheology of Jatropha Oil-Based Waterborne Polyurethane (JPU) Dispersion.” Prog. Org. Coat., 125 348–357. https://doi.org/10.1016/j.porgcoat.2018.09.018 (2018)

    Article  CAS  Google Scholar 

  46. Tielemans, M, Roose, P, Groote, PD, Vanovervelt, J-C, “Colloidal Stability of Surfactant-Free Radiation Curable Polyurethane Dispersions.” Prog. Org. Coat., 55 (2) 128–136. https://doi.org/10.1016/j.porgcoat.2005.08.010 (2006)

    Article  CAS  Google Scholar 

  47. Duffy, J, “Controlling Suspension Rheology.” Chem. Eng., 122 (1) 34–39 (2015)

    CAS  Google Scholar 

  48. Pérez Das Dores, A, Llorente, O, Martin, L, González, A, Irusta, L, “Polydimethylsiloxane Containing Waterborne Hydrophobic Polyurethane Coatings with Good Adhesion to Metals: Synthesis and Characterization.” Prog. Org. Coat., 162 106564. https://doi.org/10.1016/j.porgcoat.2021.106564 (2022)

    Article  CAS  Google Scholar 

  49. Chang, J, Wang, X, Shao, J, Li, X, “Synthesis and Characterization of Environmentally-Friendly Self-matting Waterborne Polyurethane Coatings.” Coatings, 10 (5) 494–506. https://doi.org/10.3390/coatings10050494 (2020)

    Article  CAS  Google Scholar 

  50. Waldner, C, Hirn, U, “Modeling Liquid Penetration into Porous Materials Based on Substrate and Liquid Surface Energies.” J. Colloid Interface Sci., 640 445–455. https://doi.org/10.1016/j.jcis.2023.02.116 (2023)

    Article  CAS  PubMed  Google Scholar 

  51. Liu, Y, Meng, Z, Wang, Y, Li, P, Sun, Y, “Analysis and Modeling of Viscosity for Aqueous Polyurethane Dispersion as a Function of Shear Rate, Temperature, and Solid Content.” ACS Omega, 5 (40) 26237–26244. https://doi.org/10.1021/acsomega.0c03959 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mooney, M, “The Viscosity of a Concentrated Suspension of Spherical Particles.” J. Colloid Sci., 6 (2) 162–170. https://doi.org/10.1016/0095-8522(51)90036-0 (1951)

    Article  CAS  Google Scholar 

  53. Jones, DAR, Leary, B, Boger, D, “The Rheology of a Sterically Stabilized Suspension at High Concentration.” J. Colloid Interface Sci., 150 (1) 84–96. https://doi.org/10.1016/0021-9797(92)90270-V (1992)

    Article  CAS  Google Scholar 

  54. Petrović, ZS, Guo, A, Javni, I, Cvetković, I, Hong, DP, “Polyurethane Networks from Polyols Obtained by Hydroformylation of Soybean Oil.” Polym. Int., 57 (2) 275–281. https://doi.org/10.1002/pi.2340 (2008)

    Article  CAS  Google Scholar 

  55. Lu, Y, Larock, RC, “Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties.” Biomacromolecules, 9 (11) 3332–3340. https://doi.org/10.1021/bm801030g (2008)

    Article  CAS  PubMed  Google Scholar 

  56. Madbouly, SA, Xia, Y, Kessler, MR, “Sustainable Polyurethane-Lignin Aqueous Dispersions and Thin Films: Rheological Behavior and Thermomechanical Properties.” ACS Appl. Polym., 2 (11) 5198–5207. https://doi.org/10.1021/acsapm.0c00954 (2020)

    Article  CAS  Google Scholar 

  57. Hill, LW, “Calculation of Crosslink Density in Short Chain Networks.” Prog. Org. Coat., 31 (3) 235–243. https://doi.org/10.1016/S0300-9440(97)00081-7 (1997)

    Article  CAS  Google Scholar 

  58. Ourique, P, Krindges, I, Aguzzoli, C, Figueroa, C, Amalvy, J, Wanke, C, Bianchi, O, “Synthesis, Properties, and Applications of Hybrid Polyurethane–Urea Obtained from Air-Oxidized Soybean Oil.” Prog. Org. Coat., 108 15–24. https://doi.org/10.1016/j.porgcoat.2017.04.002 (2017)

    Article  CAS  Google Scholar 

  59. Man, L, Feng, Y, Hu, Y, Yuan, T, Yang, Z, “A Renewable and Multifunctional Eco-Friendly Coating from Novel Tung Oil-Based Cationic Waterborne Polyurethane Dispersions.” J. Clean. Prod., 241 118341. https://doi.org/10.1016/j.jclepro.2019.118341 (2019)

    Article  CAS  Google Scholar 

  60. Honzíček, J, “Curing of Air-Drying Paints: A Critical Review.” Ind. Eng. Chem. Res., 58 (28) 12485–12505. https://doi.org/10.1021/acs.iecr.9b02567 (2019)

    Article  CAS  Google Scholar 

  61. Velayutham, TS, Abd, W, Ng, B, Gan, SN, “Effect of Oleic Acid Content and Chemical Crosslinking on the Properties of Palm Oil-Based Polyurethane Coatings.” J. Appl. Polym. Sci., 129 415–421. https://doi.org/10.1002/app.38768 (2013)

    Article  CAS  Google Scholar 

  62. Kalita, DJ, Tarnavchyk, I, Selvakumar, S, Chisholm, BJ, Sibi, M, Webster, DC, “Poly (Vinyl Ethers) Based on the Biomass-Derived Compound, Eugenol, and their One-Component, Ambient-Cured Surface Coatings.” Prog. Org. Coat., 170 106996. https://doi.org/10.1016/j.porgcoat.2022.106996 (2022)

    Article  CAS  Google Scholar 

  63. Streitberger, H, Goldschmidt, A, BASF Handbook Basics of Coating Technology, 3rd edn. Vincentz Network GmbH & Co. KG (2018)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51963010) and the Research Fund of Jiangxi Provincial Department of Education (No. GJJ211126).

Author information

Authors and Affiliations

Authors

Contributions

YB Ding and L Shen supervised and designed this research. ZC Lin, QY Zeng and YC Zhang did the experiment. YB Ding and ZC Lin collected and analyzed the data. YB Ding, ZC Lin, and L Shen interpreted the results and wrote the manuscript. S Chen and QY Luo discussed and revised the manuscript. All authors declare that they have no competing financial interests and gave final approval for publication.

Corresponding authors

Correspondence to Yongbo Ding or Liang Shen.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Zeng, Q., Zhang, Y. et al. Preparation and coating properties of alkyd polyol-based autoxidizable waterborne polyurethane dispersions with high fatty acid content, long storage stability, and low viscosity. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-024-00928-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-024-00928-1

Keywords

Navigation