Skip to main content
Log in

Enhancing corrosion resistance of zinc-filled protective coatings using conductive polymers

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Organic coatings containing zinc are amply used for the protection of metals, particularly steel structures. Ways to reduce the zinc content in the coating materials are sought for environmental and financial reasons. Our previous work (Kohl, Prog Org Coat 77:512–517, 2014; Kohl and Kalendová, Mater Sci Forum 818: 171–174, 2015a) suggested that one of the options consists in the use of conductive polymers in the formulation of the zinc coatings. The benefits of conductive polymers include nontoxicity, high stability, electric conductivity and redox potential. Previously we focussed on the effect of conductive polymers added to the organic coatings so as to complete the zinc volume concentration to 67%. The anticorrosion efficiency of the organic coatings was found to improve with increasing polyaniline phosphate or polypyrrole concentrations. Zinc content reduction in the system, however, did not attain more than 5%. The present work focusses on systems where the organic coatings are prepared with zinc having a pigment volume concentration PVC = 50%. Zinc content reduction in the system attains up to 20%. This work examines the mechanical and anticorrosion properties of the organic coatings with reduced zinc contents. The present work was devoted to the feasibility of using of conductive polymers in the formulation of coatings with reduced zinc contents. The conductive polymers included polyaniline, polypyrrole and poly(phenylenediamine); these were synthesised and characterised using physico-chemical methods. Polyphenylenediamine as a potential corrosion inhibitor has not been paid adequate attention so far. Subsequently, organic coatings with reduced zinc contents and containing the pigments at 0.5, 1 and 3% volume concentrations were formulated. The coatings were subjected to mechanical tests and accelerated corrosion tests to assess their mechanical and corrosion resistance. The corrosion resistance of the organic coatings was also studied by linear polarisation. The results of the mechanical tests, accelerated corrosion tests and linear polarisation measurements indicate that the organic coating properties get affected by the conductive polymer type as well as by the pigment volume concentration. The important finding is that the use of conductive polymers in coatings with reduced zinc contents was beneficial in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASTM:

American Standard for Testing and Materials

CP:

Conductive polymers

CP-base:

Conductive polymers-base

CPVC:

Critical pigment volume concentration (%)

CSN:

Czech state norm

d 50 :

Mean particle size

DFT:

Dry film thickness

e :

Electron

e.g.:

Exempli gratia

E corr :

Spontaneous corrosion potential mV

EDX:

Energy-dispersive X-ray spectroscopy

E OC :

Potential value reached at the end of the previous open circuit period (mV)

Fe:

Iron

H:

Hydrogen

i.e.:

Id est

I corr :

Current density (mV)

ISE:

Ion-selective electrode

ISO:

International Organization for Standardization

Norm:

Normed

oil abs:

Oil absorption (g 100 g−1)

PANI:

Polyaniline

PANI-EB:

Polyaniline base

PANI-ES:

Polyaniline salt

PANI-H3PO4 :

Polyaniline phosphate

PPDA:

Poly(phenylenediamine)

PPDA-H3PO4 :

Poly(p-phenylenediamine) phosphate

PPy:

Polypyrrole

PPy-H3PO4 :

Polypyrrole phosphate

PVC:

Pigment volume concentration (%)

R p :

Polarisation resistance (Ω)

SEM:

Scanning electron microscope

ρ :

Density (g cm−3)

υ corr :

Corrosion rate (mm year−1)

χ :

Conductivity (mS cm−1)

Corr:

Corrosion

Oc:

Open circuit period

P:

Polarisation

21:

21st day

References

  • Abu-Thabit NY, Makhlouf ASH (2014) 17-Recent advances in polyaniline (PANI)-based organic coatings for corrosion protection. In: Handbook of smart coatings for materials protection. Woodhead Publishing, United Kingdom, pp 459–486

  • Akbarinezhad E, Ebrahimi M, Sharif F, Attar MM, Faridi HR (2011) Synthesis and evaluating corrosion protection effects of emeraldine base PAni/clay nanocomposite as a barrier pigment in zinc-rich ethyl silicate primer. Prog Org Coat 70:39–44. doi:10.1016/j.porgcoat.2010.09.016

    CAS  Google Scholar 

  • AL-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque ME (2015) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 206:42–54. doi:10.1016/j.synthmet.2015.04.014

    CAS  Google Scholar 

  • Armelin E, Ocampo C, Liesa F, Iribarren JI, Ramis X, Alemán C (2007a) Study of epoxy and alkyd coatings modified with emeraldine base form of polyaniline. Prog Org Coat 58:316–322. doi:10.1016/j.porgcoat.2007.01.005

    CAS  Google Scholar 

  • Armelin E, Oliver R, Liesa F, Iribarren JI, Estrany F, Alemán C (2007b) Marine paint formulations: conducting polymers as anticorrosive additives. Prog Org Coat 59:46–52. doi:10.1016/j.porgcoat.2007.01.013

    CAS  Google Scholar 

  • Armelin E, Pla R, Liesa F, Ramis X, Iribarren JI, Alemán C (2008) Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Corros Sci 50:721–728. doi:10.1016/j.corsci.2007.10.006

    CAS  Google Scholar 

  • Armelin E, Alemán C, Iribarren JI (2009) Anticorrosion performances of epoxy coatings modified with polyaniline: a comparison between the emeraldine base and salt forms. Prog Org Coat 65:88–93. doi:10.1016/j.porgcoat.2008.10.001

    CAS  Google Scholar 

  • Armelin E, Martí M, Liesab F, Iribarren JI, Alemán C (2010) Partial replacement of metallic zinc dust in heavy duty protective coatings by conducting polymer. Prog Org Coat 69:26–30. doi:10.1016/j.porgcoat.2010.04.023

    CAS  Google Scholar 

  • Balinta R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353. doi:10.1016/j.actbio.2014.02.015

    CAS  Google Scholar 

  • Blinová NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polymer J 43:2331–2341. doi:10.1016/j.eurpolymj.2007.03.045

    CAS  Google Scholar 

  • Goldschmidt A, Streitberger HJ (2007) Basf handbook on basics of coating technology. Vincentz Network, Germany, pp 345–401. ISBN 973-3-86630-903-6

    Google Scholar 

  • Guimard NK, Gomez N, Schmidt CHE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921. doi:10.1016/j.progpolymsci.2007.05.012

    CAS  Google Scholar 

  • Havlík J, Kalendová A, Veselý D (2007) Electrochemical, chemical and barrier action of zinc dust/anticorrosive pigments containing coatings. J Phys Chem Solids 68:1101–1105. doi:10.1016/j.jpcs.2006.11.016

    CAS  Google Scholar 

  • Huang MR, Peng QR, Li XG (2006) Rapid and effective adsorption of lead ions on fine poly(phenylenediamine) microparticles. Chem Eur J 12:4341–4350

    CAS  PubMed  Google Scholar 

  • Kalendová A (2003) Effects of particle sizes and shapes of zinc metal n the properties of anticorrosive coating. Prog Org Coat 46:324–332. doi:10.1016/S0300-9440(03)00022-5

    CAS  Google Scholar 

  • Kalendová A, Veselý D (2009) Study of the anticorrosive efficiency of zincite and periclase-based core–shell pigments in organic coatings. Prog Org Coat 64:5–19. doi:10.1016/j.porgcoat.2008.07.003

    CAS  Google Scholar 

  • Kalendová A, Kalenda P, Veselý D (2006) Properties of anticorrosion pigments depending on their chemical composition and PVC value. Pigm Resin Technol 35:188–199. doi:10.1108/03699420610677181

    CAS  Google Scholar 

  • Kalendová A, Sapurina I, Stejskal J, Veselý D (2008) Anticorrosion properties of polyaniline-coated pigments in organic coatings. Corros Sci 50:3549–3560. doi:10.1016/j.corsci.2008.08.044

    CAS  Google Scholar 

  • Kalendová A, Veselý D, Kalenda D (2010) P. Properties of paints with hematite coated muscovite and talc particles. Appl Clay Sci 48:581–588. doi:10.1016/j.clay.2010.03.007

    CAS  Google Scholar 

  • Kalendová A, Veselý D, Kohl M, Stejskal J (2015) Anticorrosion efficiency of zinc-filled epoxy coatings containing conducting polymers and pigments. Prog Org Coat 78:1–20. doi:10.1016/j.porgcoat.2014.10.009

    CAS  Google Scholar 

  • Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324. doi:10.1016/S0079-6700(97)00030-0

    CAS  Google Scholar 

  • Király A, Ronkay F (2015) Temperature dependence of electrical properties in conductive polymer composites. Polym Testing 43:154–162. doi:10.1016/j.polymertesting.2015.03.011

    CAS  Google Scholar 

  • Kohl M, Kalendová A (2014) Assessment of the impact of polyaniline salts on corrosion properties of organic coatings. KOM 58:113–119. doi:10.1515/kom-2015-0004

    CAS  Google Scholar 

  • Kohl M, Kalendová A (2015a) The effect of polypyrrole on corrosive properties of organic coatings containing high amounts of zinc metal particles. Mater Sci Forum 818:171–174. doi:10.4028/www.scientific.net/MSF.818.171

    Google Scholar 

  • Kohl M, Kalendová A (2015b) Effect of polyaniline salts on the mechanical and corrosion properties of organic protective coatings. Prog Org Coat 86:96–107. doi:10.1016/j.porgcoat.2015.04.006

    CAS  Google Scholar 

  • Kohl M, Kalendová A (2015c) Anticorrosion properties of organic coatings containing polyphenylenediamine phosphate. Adv Sci Technol 9:47–50. doi:10.12913/22998624/60782

    Google Scholar 

  • Kohl M, Kalendová A, Stejskal J (2014) The effect of polyaniline phosphate on mechanical and corrosive properties of protective organic coatings containing high amounts of zinc metal particles. Prog Org Coat 77:512–517. doi:10.1016/j.porgcoat.2013.11.018

    CAS  Google Scholar 

  • Li XG, Huang MR, Duan W (2002) Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem Rev 102:2925–3030. doi:10.1021/cr010423z

    CAS  PubMed  Google Scholar 

  • Nascimento GM, Ricardo HS, Temperini MLA (2010) Structural characterization of poly-para-phenylenediamine–montmorillonite clay nanocomposites. Synth Met 160:2397–2403. doi:10.1016/j.synthmet.2010.09.016

    CAS  Google Scholar 

  • Nguyen TD, Nguyen TA, Pham MC, Piro B, Normand B, Takenouti H (2004) Mechanism for protection of iron corrosion by an intrinsically electronic conducting polymer. J Electroanal Chem 572:225–234. doi:10.1016/j.jelechem.2003.09.028

    CAS  Google Scholar 

  • Schaefer K, Miszczyk A (2013) Improvement of electrochemical action of zinc-rich paints by addition of nanoparticulate zinc. Corros Sci 66:380–391. doi:10.1016/j.corsci.2012.10.004

    CAS  Google Scholar 

  • Schultze JW, Karabulut H (2005) Application potential of conducting polymers. Electrochim Acta 50:1739–1745. doi:10.1016/j.electacta.2004.10.023

    CAS  Google Scholar 

  • Shreepathi S, Bajaj P, Mallik BP (2010) Electrochemical impedance spectroscopy investigations of epoxy zinc rich coatings: role of Zn content on corrosion protection mechanism. Electrochim Acta 55:5129–5134. doi:10.1016/j.electacta.2010.04.018

    CAS  Google Scholar 

  • Somboonsub B, Srisuwan S, Invernale MA, Thongyai S, Praserthdam P, Scola DA, Sotzing GA (2010) Comparison of the thermally stable conducting polymers PEDOT, PANi, and PPy using sulfonated poly(imide) templates. Polymer 51:4472–4476. doi:10.1016/j.polymer.2010.08.008

    CAS  Google Scholar 

  • Stejskal J (2015) Polymers of phenylenediamines. Prog Polym Sci 41:1–31. doi:10.1016/j.progpolymsci.2014.10.007

    CAS  Google Scholar 

  • Vernitskaya TV, Efimov ON (1997) Polypyrrole a conducting polymer; its synthesis, properties and applications. Russ Chem Rev 66:443–457

    Google Scholar 

  • Veselý D, Kalendová A, Manso MV (2012) Properties of calcined kaolins in anticorrosion paints depending on PVC, chemical composition and shape of particles. Prog Org Coat 62:82–91. doi:10.1016/j.porgcoat.2011.11.017

    CAS  Google Scholar 

  • Vliet CH (1998) Reduction of zinc and volatile organic solvents in two-pack anti-corrosive primers, a pilot study. Prog Org Coat 34:220–226. doi:10.1016/S0300-9440(98)00027-7

    Google Scholar 

  • Xie Y, Wang D (2016) Supercapacitance performance of polypyrrole/titanium nitride/polyaniline coaxial nanotube hybrid. J Alloy Compd 665:323–332. doi:10.1016/j.jallcom.2016.01.089

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Kohl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohl, M., Kalendová, A. & Schmidová, E. Enhancing corrosion resistance of zinc-filled protective coatings using conductive polymers. Chem. Pap. 71, 409–421 (2017). https://doi.org/10.1007/s11696-016-0054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0054-y

Keywords

Navigation