Skip to main content

Advertisement

Log in

The Importance of the Microbiome in Bariatric Surgery: a Systematic Review

  • Review Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Bariatric surgery results in sustained weight loss, improvement of metabolic and hormonal changes, and reduction of comorbidities in obese patients. However, beneficial effects of bariatric surgery are not solely explained by restriction and malabsorption induced by surgery itself. Changes in the microbiome might play a role in this mechanism. A systematic review was performed in which 21 studies were included. The microbiome was affected by surgery and profound changes occurred in the first year of follow-up. An increase in Bacteroides and Proteobacteria and a decrease in Firmicutes were observed postoperatively in most studies. These changes were associated with weight loss. Bariatric surgery induces profound changes in the microbiome. This may be related to the beneficial effect of bariatric surgery on comorbidities associated with obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Flegal KM. Epidemiologic aspects of overweight and obesity in the United States. Physiol Behav. 2005;86:599–602.

    Article  CAS  PubMed  Google Scholar 

  2. Sturm R, Hattori A. Morbid obesity rates continue to rise rapidly in the United States. Int J Obes. 2013;37:889–91.

    Article  CAS  Google Scholar 

  3. Kushner RF, Kahan S. Introduction: the state of obesity in 2017. Med Clin North Am. 2018;102:1–11.

    PubMed  Google Scholar 

  4. Lazzati A, Guy-Lachuer R, Delaunay V, et al. Bariatric surgery trends in France: 2005-2011. Surg Obes Relat Dis. 2014;10:328–34.

    Article  PubMed  Google Scholar 

  5. Tadross JA, le Roux CW. The mechanisms of weight loss after bariatric surgery. Int J Obes. 2009;33(Suppl 1):S28–32.

    Article  Google Scholar 

  6. Federico A, Dallio M, Tolone S, et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: effect of bariatric surgery. In vivo. 2016;30:321–30.

    CAS  PubMed  Google Scholar 

  7. Reames BN, Finks JF, Bacal D, et al. Changes in bariatric surgery procedure use in Michigan, 2006-2013. JAMA. 2014;312:959–61.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Memarian E, Calling S, Sundquist K, et al. Sociodemographic differences and time trends of bariatric surgery in Sweden 1990-2010. Obes Surg. 2014;24:2109–16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007;10:729–34.

    Article  PubMed  Google Scholar 

  10. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  11. Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haskins IN, Corcelles R, Froylich D, et al. Primary inadequate weight loss after Roux-en-Y gastric bypass is not associated with poor cardiovascular or metabolic outcomes: experience from a single institution. Obes Surg. 2017;27:676–80.

    Article  PubMed  Google Scholar 

  13. Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Akbay E, Yetkin I, Ersoy R, et al. The relationship between levels of alpha1-acid glycoprotein and metabolic parameters of diabetes mellitus. Diabetes Nutr Metab. 2004;17:331–5.

    CAS  PubMed  Google Scholar 

  15. Kang Y, Cai Y. Gut microbiota and obesity: implications for fecal microbiota transplantation therapy. Hormones. 2017;16:223–34.

    Article  PubMed  Google Scholar 

  16. Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg. 1996;20:411–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  CAS  PubMed  Google Scholar 

  19. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106:2365–70.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13:514–22.

    Article  CAS  PubMed  Google Scholar 

  22. Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98:16–24.

    Article  CAS  PubMed  Google Scholar 

  23. Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:806248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patrone V, Vajana E, Minuti A, et al. Postoperative changes in fecal bacterial communities and fermentation products in obese patients undergoing bilio-intestinal bypass. Front Microbiol. 2016;7:200.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murphy R, Evennett NJ, Clarke MG, et al. Sleeve gastrectomy versus Roux-en-Y gastric bypass for type 2 diabetes and morbid obesity: double-blind randomised clinical trial protocol. BMJ Open. 2016;6:e011416.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ilhan ZE, DiBaise JK, Isern NG, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11:2047–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanmiguel CP, Jacobs J, Gupta A, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: preliminary findings in obese women undergoing bariatric surgery. Psychosom Med. 2017;79:880–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Medina DA, Pedreros JP, Turiel D, et al. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ. 2017;5:e3443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859–68.

    Article  CAS  PubMed  Google Scholar 

  32. Chen H, Qian L, Lv Q, et al. Change in gut microbiota is correlated with alterations in the surface molecule expression of monocytes after Roux-en-Y gastric bypass surgery in obese type 2 diabetic patients. Am J Transl Res. 2017;9:1243–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Campisciano G, Cason C, Palmisano S, et al. Bariatric surgery drives major rearrangements of the intestinal microbiota including the biofilm composition. Front Biosci (Elite Ed). 2018;10:495–505.

    Google Scholar 

  34. Campisciano G, Palmisano S, Cason C, et al. Gut microbiota characterisation in obese patients before and after bariatric surgery. Benefic Microbes. 2018;9:367–73.

    Article  CAS  Google Scholar 

  35. Aron-Wisnewsky J, Prifti E, Belda E, Ichou F, Kayser BD, Dao MC, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2019;68(1):70–82

  36. Kikuchi R, Irie J, Yamada-Goto N, et al. The impact of laparoscopic sleeve gastrectomy with duodenojejunal bypass on intestinal microbiota differs from that of laparoscopic sleeve gastrectomy in Japanese patients with obesity. Clin Drug Investig. 2018;38:545–52.

    Article  PubMed  Google Scholar 

  37. Kumar R, Grams J, Chu DI, et al. New microbe genomic variants in patients fecal community following surgical disruption of the upper human gastrointestinal tract. HUMIC. 2018;10:37–42.

    Google Scholar 

  38. Cortez RV, Petry T, Caravatto P, et al. Shifts in intestinal microbiota after duodenal exclusion favor glycemic control and weight loss: a randomized controlled trial. Surg Obes Relat Dis. 2018;14:1748–54.

    Article  PubMed  Google Scholar 

  39. Hong S-H, Bunge J, Jeon S-O, et al. Predicting microbial species richness. Proc Natl Acad Sci U S A. 2006;103:117–22.

    Article  CAS  PubMed  Google Scholar 

  40. Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A. 2008;105:2117–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Murphy R, Tsai P, Jullig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27:917–25.

    Article  PubMed  Google Scholar 

  42. Backhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gagliardi A, Totino V, Cacciotti F, et al. Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health. 2018;15(8)

  44. Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11:1–10.

    Article  PubMed  Google Scholar 

  45. Costello SP, Waters O, Bryant RV, et al. Short duration, low intensity, pooled fecal microbiota transplantation induces remission in patients with mild-moderately active ulcerative colitis: a randomised controlled trial. Gastroenterology. 2017;152:S198–S9.

    Article  Google Scholar 

  46. Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389:1218–28.

    Article  PubMed  Google Scholar 

  47. Khanna S, Vazquez-Baeza Y, Gonzalez A, et al. Changes in microbial ecology after fecal microbiota transplantation for recurrent C difficile infection affected by underlying inflammatory bowel disease. Microbiome. 2017;5:55.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Praagh JB, de Goffau MC, Bakker IS, et al. Intestinal microbiota and anastomotic leakage of stapled colorectal anastomoses: a pilot study. Surg Endosc. 2016;30:2259–65.

    Article  PubMed  Google Scholar 

  49. van Praagh JB, de Goffau MC, Bakker IS, van Goor H, Harmsen HJM, Olinga P, et al. Mucus microbiome of anastomotic tissue during surgery has predictive value for colorectal anastomotic leakage. Ann Surg. 2018. [ePub ahead of print]

  50. Reddy RM, Weir WB, Barnett S, et al. Increased variance in oral and gastric microbiome correlates with esophagectomy anastomotic leak. Ann Thorac Surg. 2018;105:865–70.

    Article  PubMed  Google Scholar 

  51. Castaner O, Goday A, Park YM, et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018;2018:4095789.

    PubMed  PubMed Central  Google Scholar 

  52. Liu H, Hu C, Zhang X, et al. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. J Diabetes Investig. 2018;9:13–20.

    Article  PubMed  Google Scholar 

  53. Guo Y, Huang ZP, Liu CQ, et al. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol. 2018;178:43–56.

    Article  CAS  PubMed  Google Scholar 

  54. Ejtahed HS, Angoorani P, Hasani-Ranjbar S, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog. 2018;116:13–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this paper. Conception and design of the study: ML and GN; literature review and analysis: JL and GV; drafting and critical revision and editing, and final approval of the final version: JL, GV, ML, and GN.

Corresponding author

Correspondence to Misha D. P. Luyer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statements Regarding Ethics and Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Core Tip

Bariatric surgery is associated with rapid and sustained alterations in the gut microbiome, with more pronounced changes in patients undergoing Roux-en-Y gastric bypass compared with sleeve gastrectomy. Furthermore, an increase of diversity and microbial richness of the human microbiome was observed following bariatric surgery. This may be related to the beneficial effect of bariatric surgery on comorbidities associated with obesity, such as type 2 diabetes. Unraveling the exact correlations between alterations in microbiome and bariatric surgery is challenging and may provide new therapeutic opportunities to reduce morbid obesity.

Appendices

Appendix 1. Full search strategy

PubMed

(“gastrointestinal microbiome” OR microbiome OR microbioom OR microbioma) AND (“gastric band” OR “obesity surgery” OR RYGB OR “Roux-en-Y gastric bypass” OR “biliopancreatic diversion” OR DJB OR “duodenal-jejunal bypass” OR gastrojejunostomies OR gastrojejunostomy OR “sleeve gastrectomy” OR “bariatric surgery” OR “upper gastrointestinal surgery” OR “gastric surgery”)

Embase

(“gastric band” or “bariatric surgery” or “upper gastrointestinal surgery” or “gastric surgery” or “sleeve gastrectomy” or gastrojejunostomy or gastrojejunostomies or “duodenal-jejunal bypass” or “biliopancreatic diversion” or “Roux-en-Y gastric bypass” or DJB or RYGB or “obesity surgery”).af. AND (“gastrointestinal microbiome” or microbiome or microbioom or microbioma).af.

Appendix 2 Quality Assessment

Table 6 Quality assessment tool for observational cohort and cross-sectional studies
Table 7 Quality assessment tool for case control studies
Table 8 Quality assessment tool for controlled intervention studies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luijten, J.C.H.B.M., Vugts, G., Nieuwenhuijzen, G.A.P. et al. The Importance of the Microbiome in Bariatric Surgery: a Systematic Review. OBES SURG 29, 2338–2349 (2019). https://doi.org/10.1007/s11695-019-03863-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-019-03863-y

Keywords

Navigation