Skip to main content
Log in

Effects of particle size on the physical, chemical, and technological properties of pre-gelatinized whole pinhão (Araucaria angustifolia) flour

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study investigates the influence of particle size on the chemical, technological, rheological, thermal, and structural properties of whole pinhão flour, employing pre-gelatinized seeds, in response to the growing demand for diverse and healthier food choices. The fractionation conducted using RO-TAP® at different particle sizes (210 μm - P1, 149 μm - P2, 105 μm - P3, and < 105 μm - P4) led to significant changes in chemical composition, mineral content, viscosity, and thermal characteristics. The P3 fraction emerged as particularly promising, with elevated levels of total carbohydrates (60.27 g/100 g), total starch (46.14 g/100 g), and viscosity (1,545.50 cP), making it ideal for baking. Remarkably, P1 and P4 fractions exhibited elevated levels of fiber (46.96 and 38.57 g/100 g), phenolic compounds (13.35 and 13.51 mg EAG/g), and in vitro antioxidant activity. Lipid content increased inversely with particle size, accompanied by a decrease in resistant starch. All the pinhão fractions exhibited substantial mineral content, ranging from 2 to 2.24 g/100 g. Infrared spectroscopy analyses highlighted compositional similarities in samples, which uniformly exhibited type C crystallinity and high crystallinity indices (38.89%, 44.28%, 47.11%, and 46.46%, respectively). Fibers negatively affected viscosity, thermal properties, and starch gelatinization. Notably, the fraction with the smallest particle size demonstrated improved suitability for developing gluten-free bread products. This study highlights the importance of processing and fractionating pinhão flour to enhance resource utilization efficiency. Furthermore, the findings provide tangible insights to enhance pinhão production and processing chains, fortifying the food industry and addressing consumer preferences for healthier and more diverse products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Polo, K. Arora, H. Ameur, R. Di Cagno, M. Angelis, M. Gobbetti, J. Cereal Sci. 95, 103058 (2020). https://doi.org/10.1016/j.jcs.2020.103058

    Article  CAS  Google Scholar 

  2. LP Information Inc., Global Gluten Free Food Market Growth 2023–2029, (Publishing Market Research, 2023), https://www.marketresearch.com/LP-Information-Inc-v4134/Global-Gluten-Free-Food-Growth-34118903/. Accessed 13 July 2023

  3. N.M.M. Alencar, V.A. Araújo, L. Faggian, M.B.S. Araújo, V.D. Capriles, J. Sens. Stud. 36, e12664 (2021). https://doi.org/10.1111/joss.12664

    Article  Google Scholar 

  4. M. Arslan, A. Rakha, Z. Xiaobo, M.A. Mahmood, Trends Food Sci. Technol. 83, 194 (2019). https://doi.org/10.1016/j.tifs.2018.11.011

    Article  CAS  Google Scholar 

  5. I. Ammar, H. Sebii, T. Aloui, H. Attia, B. Hadrich, I. Felfoul, Heliyon. 8 (2022). https://doi.org/10.1016/j.heliyon.2022.e12164. e12164

  6. E.A. Mahmoud, A. Omur, A. Mehder, Arab. J. Chem. 15, 104051 (2022). https://doi.org/10.1016/j.arabjc.2022.104051

    Article  CAS  Google Scholar 

  7. C.R. Storck, C.R. Fortes, S.L.M. El Halal, J.D. Ribeiro, G.E. Montagner, L.M. Fonseca, E.R. Zavareze, A.R.G. Dias, Food Biosci. 44, 101441 (2021). https://doi.org/10.1016/j.fbio.2021.101441

    Article  CAS  Google Scholar 

  8. R.M. Peralta, E.A. Koehnlein, R.F. Oliveira, V.G. Correa, R.C.G. Corrêa, L. Bertonha, A. Bracht, I.C.F.R. Ferreira, Trends Food Sci. Technol. 54, 85 (2016). https://doi.org/10.1016/j.tifs.2016.05.013

    Article  CAS  Google Scholar 

  9. J.P. Polet, V.R. Oliveira, A.O. Rios, C.G. Souza, J. Culin. Sci. Technol. 17, 136 (2019). https://doi.org/10.1080/15428052.2017.1405861

    Article  Google Scholar 

  10. M. Ikeda, C.W.P. Carvalho, C.V. Helm, H.M.C. Azeredo, R.C.B. Gogoy, R.H. Ribani, Cienc. Rural. 48, e20170732 (2018). https://doi.org/10.1590/0103-8478cr20170732

    Article  CAS  Google Scholar 

  11. B.V. Gil, A.P.C. Moura, M.R. Sachet, M.F. Ribas, R.H. Pertille, A. Rohr, E.A. Pereira, M.A. Danner, Cienc. Rural. 51, e20200399 (2021). https://doi.org/10.1590/0103-8478cr20200399

    Article  CAS  Google Scholar 

  12. R.M. Daudt, R.J. Avena-Bustillos, T. Williams, D.F. Wood, I.C. Külkamp-Guerreiro, L.D.F. Marczak, T.H. McHugh, Food Hydrocoll. 60, 279 (2016). https://doi.org/10.1016/j.foodhyd.2016.03.040

    Article  CAS  Google Scholar 

  13. T. Jorge, J.D.D. Lindner, S.M.V. Mejia, B. Mattioni, J. Rotta, S. Morés, A. Francisco, E.S. Sant’Anna, J. Inst. Brew. 124, 365 (2018). https://doi.org/10.1002/jib.507

    Article  CAS  Google Scholar 

  14. K. Dall Acua, S.F. Sommer, M.F. Richter, F.L. Leães, V. Sant’Anna, J. Culin. Sci. Technol. 1 (2022). https://doi.org/10.1080/15428052.2022.2040682

  15. E.F.R. Silva, B.R.S. Santos, L.A.C. Minho, G.C. Brandão, M.J. Silva, M.V.L. Silva, W.N.L. Santos, A.M.P. Santos, Food Chem. 369, 130672 (2022). https://doi.org/10.1016/j.foodchem.2021.130672

    Article  CAS  PubMed  Google Scholar 

  16. D.A. Sampaio, R.A. Garcia, H.R.P. Lima, Floresta Ambiente 26, e20170867 (2019). https://doi.org/10.1590/2179-8087.086717

  17. T.B. Freitas, C.H.K. Santos, M.V. Silva, M.A. Shirai, M.I. Dias, L. Barros, M.F. Barreiro, I.C.F.R. Ferreira, O.H. Gonçalves, F.V. Leimann, Food Packag Shelf Life. 15, 28 (2018). https://doi.org/10.1016/j.fpsl.2017.10.006

    Article  Google Scholar 

  18. G.G. Lima, N.B. Miranda, T.G. Timm, M. Matos, T.A.M. Lima, W.L.E. Magalhães, L.B.B. Tavares, F.A. Hansel, C.V. Helm, Food Funct. 11, 9820 (2020). https://doi.org/10.1039/D0FO02256J

    Article  PubMed  Google Scholar 

  19. T.G. Timm, G.G. Lima, M. Matos, W.L.E. Magalhães, L.B.B. Tavares, C.V. Helm, J. Food Process. Preserv. 44 (2020). https://doi.org/10.1111/jfpp.14464

  20. A. Costa, T.G. Timm, C.V. Helm, L.B.B. Tavares, Ind. Biotechnol. 18, 214 (2022). https://doi.org/10.1089/ind.2021.0030

    Article  CAS  Google Scholar 

  21. F.C. Leal, K.M. Ueda, M.S.T. Arantes, T.A.M. Lima, F.A. Hansel, W.L.E. Magalhães, C.V. Helm, R.A. Freitas, F.O. Farias, M.R. Mafra, L. Igarashi-Mafra, Food Chem. 440, 138195 (2024). https://doi.org/10.1016/j.foodchem.2023.138195

    Article  CAS  PubMed  Google Scholar 

  22. Brazilian Institute of Geography and Statistics. Produção de pinhão. (Publishing, Instituto Brasileiro de Geografia e Estatística, 2024), https://www.ibge.gov.br/explica/producao-agropecuaria/pinhao/br. Accessed 13 March 2024

  23. M.E.B. Zortéa-Guidolin, I.M. Demiate, R.C.B. de Godoy, A.P. Scheer, D. Grewell, J. Jane, Food Hydrocoll. 63, 19 (2017). https://doi.org/10.1016/j.foodhyd.2016.08.022

    Article  CAS  Google Scholar 

  24. R.G. Castrillon, C.V. Helm, A.L. Mathias, Cienc. Rural. 53 (2023). https://doi.org/10.1590/0103-8478cr20220048

  25. C.V. Helm, Uso integral do pinhão no desenvolvimento de produtos alimentícios de conveniência e saudabilidade, no conceito de economia circularPublishing Embrapa Florestas,. (2023), https://www.embrapa.br/en/busca-de-projetos/-/projeto/218539/uso-integral-do-pinhao-no-desenvolvimento-de-produtos-alimenticios-de-conveniencia-e-saudabilidade-no-conceito-de-economia-circular. Accessed 14 November 2023

  26. R.G. Castrilhon, Aproveitamento integral do pinhão no desenvolvimento de barras de cereal bioativas. (Publishing Universidade Federal do Paraná, 2022), https://acervodigital.ufpr.br/xmlui/handle/1884/80936. Accessed 14 November 2023

  27. Y. Gu, X. Qian, B. Sun, S. Ma, X. Tian, X. Wang, LWT 154, 112757 (2022). https://doi.org/10.1016/j.lwt.2021.112757

  28. B. Martín-García, V. Verardo, E.D. Cerio, M.C. Razola-Díaz, M.C. Messia, E. Marconi, A.M. Gómez-Caravaca, LWT 150, 111893 (2021). https://doi.org/10.1016/j.lwt.2021.111893

  29. Y. Ren, R. Setia, T.D. Warkentin, Y. Ai, Food Chem. 336, 127711 (2021). https://doi.org/10.1016/j.foodchem.2020.127711

    Article  CAS  PubMed  Google Scholar 

  30. S.D. Sakhare, A.A. Inamdar, C. Soumya, D. Indrani, G.V. Rao, J. Food Sci. Technol. 51, 4108 (2014). https://doi.org/10.1007/s13197-013-0939-5

    Article  CAS  PubMed  Google Scholar 

  31. International Organization for Standardization – ISO, Particle size analysis Laser diffraction methods - Partie 1: General principles. 1st ed. (ISO 13320-1:1999 Standard, Londres, UK, 1999)

  32. A. Francisco, L. Munck, in Fluorescence Analysis in Foods, edited by L. Munck and A. Francisco, 1st edLongmann Scientific and Technical, Essex, UK,. (1989), pp. 110–124

  33. Association of Official Analytical Chemist’s - AOAC, Official Methods of Analysis of AOAC International, 18th edn. (AOAC International, Gaiphersburg, MD, USA, 2005)

    Google Scholar 

  34. F.C. Silva, Manual de Análises Químicas De Solos, Plantas E Fertilizantes (Embrapa, Brasília, 1999)

    Google Scholar 

  35. J.R. Sarruge, H.P. Haag, Análises Químicas Em Plantas (ESALQ, Departamento de Química, Piracicaba, SP, 1974)

  36. A.D. Santos, A.R. Coscione, A.C. Vitti, A.E. Boaretto, A.M. Coelho, B. Raij, Manual de Análises Químicas De Solos, Plantas E Fertilizantes, 2nd edn. (Embrapa Informação Tecnológica, Brasília, DF, 2009)

    Google Scholar 

  37. A.R. Nogueira, G.B. Souza, Manual de Laboratórios: Solo, Água, Nutrição Animal E Alimentos (Embrapa Pecuária Sudeste, São Carlos, 2005)

    Google Scholar 

  38. E.A. Koehnlein, A.E.S. Carvajal, E.M. Koehnlein, J.S. Coelho-Moreira, F.D. Inácio, R. Castoldi, A. Bracht, R.M. Peralta, Afr. J. Food Sci. 6, 512 (2012). https://doi.org/10.5897/AJFS12.128

    Article  CAS  Google Scholar 

  39. V.L. Singleton, J.A. Rossi, Am. J. Enol. Vitic. 16, 144 (1965). https://doi.org/10.5344/ajev.1965.16.3.144

    Article  CAS  Google Scholar 

  40. I.F.F. Benzie, J.J. Strain, Anal. Biochem. 239, 70 (1996). https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  41. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic Biol. Med. 26, 1231 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  42. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT - Food Sci. Technol. 28, 25 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  43. C. Beninca, R.Z.B. Bisinella, C.D. Bet, C.S. Oliveira, R.A. Barboza, T.A.D. Colman, I.M. Demiate, E. Schnitzler, J. Therm. Anal. Calorim. 140, 743 (2020). https://doi.org/10.1007/s10973-019-08811-7

    Article  CAS  Google Scholar 

  44. K. Hayakawa, K. Tanaka, T. Nakamura, S. Endo, T. Hoshino, Cereal Chem. J. 74, 576 (1997). https://doi.org/10.1094/CCHEM.1997.74.5.576

    Article  CAS  Google Scholar 

  45. N.N.G. Chiranthika, A. Chandrasekara, K.D.P.P. Gunathilake, Food Hydrocoll. 124, 107272 (2022). https://doi.org/10.1016/j.foodhyd.2021.107272

    Article  CAS  Google Scholar 

  46. H.W. Leach, L.D. Mc, Cowen, T.J. Schoch, Cereal Chem. 36, 534 (1959)

    CAS  Google Scholar 

  47. C.W. Walker, A.S. Ross, C.W. Wrigley, G.J. McMaster, Cereal Foods World. 33, 491 (1988). http://hdl.handle.net/102.100.100/264991?index=1

    CAS  Google Scholar 

  48. R.C.S.T. Muccillo, Caracterização e avaliação de amido nativo e modificado de pinhão mediante provas funcionais e térmicas. (Publishing Universidade Federal do Rio Grande do Sul, 2009), https://lume.ufrgs.br/bitstream/handle/10183/18598/000730841.pdf?sequence=1&isAllowed=y. Accessed 14 November 2023

  49. C. Beninca, R.A. Barboza, C.S. Oliveira, C.D. Bet, R.Z.B. Bisinella, E. Schnitzler, Starch. 71, 1800290 (2019). https://doi.org/10.1002/star.201800290

    Article  CAS  Google Scholar 

  50. M. Bala, S. Handa, M. D, and, R.K. Singh, Heliyon 6, e05471 (2020). https://doi.org/10.1016/j.heliyon.2020.e05471

  51. P.C. Bartley, B.E. Jackson, W.C. Fonteno, Powder Technol. 355, 349 (2019). https://doi.org/10.1016/j.powtec.2019.07.016

    Article  CAS  Google Scholar 

  52. W. Qin, Z. Lin, A. Wang, Z. Chen, Y. He, L. Wang, L. Liu, F. Wang, L.T. Tong, LWT 151, 112236 (2021). https://doi.org/10.1016/j.lwt.2021.112236

  53. R. Sharma, N. Kotwaliwale, N. Jindal, D.C. Saxena, Int. J. Food Sci. Technol. 58, 3144 (2023). https://doi.org/10.1111/ijfs.16442

    Article  CAS  Google Scholar 

  54. V.Z. Pinto, K. Moomand, N.L. Vanier, R. Colussi, F.A. Villanova, E.R. Zavareze, L.T. Lim, A.R.G. Dias, Int. J. Food Sci. Technol. 50, 282 (2015). https://doi.org/10.1111/ijfs.12608

    Article  CAS  Google Scholar 

  55. M.S. Dorneles, E.S. Azevedo, C.P.Z. Noreña, Food Hydrocoll. 150, 109639 (2024). https://doi.org/10.1016/j.foodhyd.2023.109639

    Article  CAS  Google Scholar 

  56. V.Z. Pinto, N.L. Vanier, B. Klein, E.R. Zavareze, M.C. Elias, L.C. Gutkoski, E. Helbig, A.R.G. Dias, Starch. 64, 855 (2012). https://doi.org/10.1002/star.201200040

    Article  CAS  Google Scholar 

  57. L.A. Donaldson, K. Radotic, J. Microsc. 251, 178 (2013). https://doi.org/10.1111/jmi.12059

    Article  CAS  PubMed  Google Scholar 

  58. M. Khatib, C. Pouzet, C. Lafitte, J. Chervin, V. Bonzon-Ponnet, A. Jauneau, M.-T. Esquerré-Tugayé, AoB Plants. 13 (2021). https://doi.org/10.1093/aobpla/plab041

  59. G.S.T. Mota, A.B. Arantes, G. Sacchetti, A. Spagnoletti, P. Ziosi, E. Scalambra, S. Vertuani, S. Manfredini, J. Cosmet. Dermatol. Sci. Appl. 04, 190 (2014). https://doi.org/10.4236/jcdsa.2014.43027

    Article  CAS  Google Scholar 

  60. C.H.K. Santos, M.R. Baqueta, A. Coqueiro, M.I. Dias, L. Barros, M.F. Barreiro, I.C.F.R. Ferreira, O.H. Gonçalves, E. Bona, M.V. da Silva, F.V. Leimann, Food Chem. 261, 216 (2018). https://doi.org/10.1016/j.foodchem.2018.04.057

    Article  CAS  PubMed  Google Scholar 

  61. H.-I. Jun, S.-H. Yoo, G.-S. Song, Y.-S. Kim, Korean J. Food Preserv. 24, 965 (2017). https://doi.org/10.11002/kjfp.2017.24.7.965

    Article  Google Scholar 

  62. A. Dhiman, P.K. Prabhakar, J. Food Eng. 292, 110248 (2021). https://doi.org/10.1016/j.jfoodeng.2020.110248

    Article  CAS  Google Scholar 

  63. E. Nkurikiye, M.K. Pulivarthi, A. Bhatt, K. Siliveru, Y. Li, J. Food Eng. 357, 111647 (2023). https://doi.org/10.1016/j.jfoodeng.2023.111647

    Article  CAS  Google Scholar 

  64. R.K. Ambrose, S. Jan, K. Siliveru, J. Sci. Food Agric. 96, 359 (2016). https://doi.org/10.1002/jsfa.7305

    Article  CAS  PubMed  Google Scholar 

  65. E.D.L. Hera, M. Gomez, C.M. Rosell, Carbohydr. Polym. 98, 421 (2013). https://doi.org/10.1016/j.carbpol.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  66. J.M. Kim, M. Shin, LWT - Food Sci. Technol. 59, 526 (2014). https://doi.org/10.1016/j.lwt.2014.04.042

    Article  CAS  Google Scholar 

  67. N. Muñoz-Tebar, L. Candela-Salvador, J.Á. Pérez-Álvarez, J.M. Lorenzo, J. Fernández-López, M. Viuda-Martos, Plants. 13, 335 (2024). https://doi.org/10.3390/plants13030335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. F. Lyu, A.F.B.V.D. Poel, W.H. Hendriks, M. Thomas, Anim. Feed Sci. Technol. 281, 115095 (2021). https://doi.org/10.1016/j.anifeedsci.2021.115095

    Article  CAS  Google Scholar 

  69. L. Roman, M.M. Martinez, Foods. 8, 267 (2019). https://doi.org/10.3390/foods8070267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. D.S. Malta, G.G. Lima, M.S.T. Arantes, A.E.B. Lacerda, A.L. Mathias, W.L.E. Magalhães, C.V. Helm, M.L. Masson, J. Food Sci. 87, 4738 (2022). https://doi.org/10.1111/1750-3841.16299

    Article  CAS  PubMed  Google Scholar 

  71. X. Xu, S. Bean, X. Wu, Y.C. Shi, Food Chem. 383, 132635 (2022). https://doi.org/10.1016/j.foodchem.2022.132635

    Article  CAS  PubMed  Google Scholar 

  72. J. Ahmed, L. Thomas, Y.A. Arfat, Food Res. Int. 116, 302 (2019). https://doi.org/10.1016/j.foodres.2018.08.039

    Article  CAS  PubMed  Google Scholar 

  73. M. Cai, C. Shen, Y. Li, S. Xiong, F. Li, J. Sci. Food Agric. 103, 2483 (2023). https://doi.org/10.1002/jsfa.12465

    Article  CAS  PubMed  Google Scholar 

  74. D. Yu, J. Chen, J. Ma, H. Sun, Y. Yuan, Q. Ju, Y. Teng, M. Yang, W. Li, K. Fujita, E. Tatsumi, G. Luan, LWT 92, 220 (2018). https://doi.org/10.1016/j.lwt.2018.02.033

  75. B. Martín-García, F. Pasini, V. Verardo, A.M. Gómez-Caravaca, E. Marconi, M.F. Caboni, Antioxidants. 8, 583 (2019). https://doi.org/10.3390/antiox8120583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. R. Sharma, N. Kotwaliwale, N. Jindal, D.C. Saxena, J. Food Meas. Charact. 17, 1253 (2023). https://doi.org/10.1007/s11694-022-01700-y

    Article  Google Scholar 

  77. J. Anuntagool, S. Soonthonsun, LWT 189, 115418 (2023). https://doi.org/10.1016/j.lwt.2023.115418

  78. Y. Li, M. Li, L. Wang, Z. Li, Food Chem. 367, 130751 (2022). https://doi.org/10.1016/j.foodchem.2021.130751

    Article  CAS  PubMed  Google Scholar 

  79. V. Sant’Anna, N.M. Sfoglia, G.D. Mercali, A.P.F. Corrêa, A. Brandelli, Int J Food Sci Technol 51, 1932 (2016). https://doi.org/10.1111/ijfs.13170

  80. G.R. Protzek, W.L.E. Magalhães, P.R.S. Bittencourt, S.C. Neto, R.L. Villanova, E.C. Azevedo, Polímeros 29, (2019). https://doi.org/10.1590/0104-1428.01218

  81. S.S. Barros, W.A.G. Jr. Pessoa, A.C. Júnior, Z.V. Borges, C.M. Poffo, D.M. Regis, F.A. Freitas, L. Manzato, Res. Soc. Dev. 10, e270101018836 (2021). https://doi.org/10.33448/rsd-v10i10.18836

    Article  Google Scholar 

  82. C.G. Araldi, C.M.M. Coelho, M. Maraschin, Afr. J. Agric. Res. 11, 760 (2016). https://doi.org/10.5897/AJAR2015.10054

    Article  CAS  Google Scholar 

  83. M. Shibata, C.M.M. Coelho, E.C. Schmidt, Z.L. Bouzon, J.M.S. Campos, M. Maraschin, Acta Sci. Biol. Sci. 41, 43381 (2019). https://doi.org/10.4025/actascibiolsci.v41i1.43381

    Article  CAS  Google Scholar 

  84. C.D. Bet, R.Z.B. Bisinella, T.A.D. Colman, L.G. Lacerda, E. Schnitzler, Ukr. Food J. 9, 769 (2020). https://doi.org/10.24263/2304-974X-2020-9-4-4

    Article  CAS  Google Scholar 

  85. C. Cai, C. Wei, Carbohydr. Polym. 92, 469 (2013). https://doi.org/10.1016/j.carbpol.2012.09.073

    Article  CAS  PubMed  Google Scholar 

  86. W. He, C. Wei, Food Hydrocoll. 73, 162 (2017). https://doi.org/10.1016/j.foodhyd.2017.07.003

    Article  CAS  Google Scholar 

  87. S.A. Junejo, B.M. Flanagan, B. Zhang, S. Dhital, Carbohydr. Polym. 277, 118837 (2022). https://doi.org/10.1016/j.carbpol.2021.118837

    Article  CAS  PubMed  Google Scholar 

  88. R. Bajaj, N. Singh, A. Kaur, N. Inouchi, J. Food Sci. Technol. 55, 3799 (2018). https://doi.org/10.1007/s13197-018-3342-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. F. Cheng, K. Ding, H. Yin, M. Tulbek, C.M. Chigwedere, Y. Ai, Food Res. Int. 163, 112223 (2023). https://doi.org/10.1016/j.foodres.2022.112223

    Article  CAS  PubMed  Google Scholar 

  90. J. Ahmed, S. Al-Jassar, L. Thomas, Food Hydrocoll. 48, 72 (2015). https://doi.org/10.1016/j.foodhyd.2015.02.012

    Article  CAS  Google Scholar 

  91. A.L. Boka, G.N. Tolesa, S. Abera, Cogent Food Agric. 9 (2023). https://doi.org/10.1080/23311932.2023.2242635

  92. A.U. Joshi, C. Liu, S.K. Sathe, LWT - Food Sci. Technol. 60, 325 (2015). https://doi.org/10.1016/j.lwt.2014.08.038

    Article  CAS  Google Scholar 

  93. S. Huang, M.M. Martinez, B.M. Bohrer, Foods. 8, 586 (2019). https://doi.org/10.3390/foods8110586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. H. Kusumayanti, N.A. Handayani, H. Santosa, Procedia Environ. Sci. 23, 164 (2015). https://doi.org/10.1016/j.proenv.2015.01.025

    Article  CAS  Google Scholar 

  95. S.R. Kesselly, R. Mugabi, Y.B. Byaruhanga, Sci. Afr. 19, e01532 (2023). https://doi.org/10.1016/j.sciaf.2022.e01532

    Article  CAS  Google Scholar 

  96. K.O. Falade, C.A. Okafor, J. Food Sci. Technol. 52, 3440 (2014). https://doi.org/10.1007/s13197-014-1368-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Z. Goranova, M. Marudova, M. Baeva, Food Chem. 297, 124997 (2019). https://doi.org/10.1016/j.foodchem.2019.124997

    Article  CAS  PubMed  Google Scholar 

  98. P.S. Hornung, S.R.S. Lazzarotto, M.B. Bellettini, M. Lazzarotto, T. Beta, R.H. Ribani, E. Schnitzler, Starch. 71, 1800140 (2019). https://doi.org/10.1002/star.201800140

    Article  CAS  Google Scholar 

  99. R. Wang, C. Chen, S. Guo, J. Food Eng. 207, 81 (2017). https://doi.org/10.1016/j.jfoodeng.2017.03.018

    Article  CAS  Google Scholar 

  100. F. Zeng, F. Chen, F. Kong, Q. Gao, R.M. Aadil, S. Yu, Food Chem. 187, 348 (2015). https://doi.org/10.1016/j.foodchem.2015.04.033

    Article  CAS  PubMed  Google Scholar 

  101. J. Hasjim, E. Li, S. Dhital, Carbohydr. Polym. 92, 682 (2013). https://doi.org/10.1016/j.carbpol.2012.09.023

    Article  CAS  PubMed  Google Scholar 

  102. Κ. Tsatsaragkou, S. Protonotariou, I. Mandala, J. Cereal Sci. 67, 58 (2016). https://doi.org/10.1016/j.jcs.2015.10.003

    Article  CAS  Google Scholar 

  103. M.M. Martínez, Á. Díaz, M. Gómez, J. Food Eng. 142, 49 (2014). https://doi.org/10.1016/j.jfoodeng.2014.06.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Embrapa Florestas and SL Alimentos for their support in the research on the preparation and fractionation of flour. The laboratories at the Federal University of Santa Catarina (LCME-UFSC, LAMEB-UFSC, LDRX-UFSC, EQA-UFSC, Laboratório de Reologia e Polímeros Naturais-UFSC, LABCAL-UFSC, LABCERES-UFSC), as well as Kacia Souza Coelho and Camila Vitorino Meurer, provided essential assistance in scanning electron microscopy, fluorescence microscopy, X-ray diffraction analysis, FTIR analysis, DSC analysis, protein analysis, and fiber and starch analysis, respectively. Additionally, the authors are grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for their support of this research. Renata D. M. C. Amboni and Edna R. Amante received fellowships (PQ1D and PQ2, respectively) from CNPq.

Funding

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil, [Finance Code 001]), Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA, Brazil, [20.20.03.044.00.00]), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil, [305007/2022-0, and 140616/2021-7]).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by [Maria Josikelvia de Oliveira Almeida], [Bruna Rafaela da Silva Monteiro Wanderley], [Alicia de Francisco], [Edna Regina Amante], [Carlise Beddin Fritzen Freire], [Cristiane Vieira Helm] and [Renata Dias de Mello Castanho Amboni]. The first draft of the manuscript was written by [Maria Josikelvia de Oliveira Almeida] and [Bruna Rafaela da Silva Monteiro Wanderley], and all authors commented on previous versions of the manuscript. [Renata Dias de Mello Castanho Amboni] and [Cristiane Vieira Helm] supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Renata Dias de Mello Castanho Amboni.

Ethics declarations

Consent for publication

All authors consent to the publication of this manuscript.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M.J.d., Wanderley, B.R.S.M., de Francisco, A. et al. Effects of particle size on the physical, chemical, and technological properties of pre-gelatinized whole pinhão (Araucaria angustifolia) flour. Food Measure (2024). https://doi.org/10.1007/s11694-024-02599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02599-3

Keywords

Navigation