Skip to main content
Log in

Microbial biosynthesis of selenium nanoparticles using probiotic strain and its characterization

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study investigates the sustainable biosynthesis of selenium nanoparticles utilizing different probiotic strains namely Lactobacillus delbrueckii sub. sp. bulgaricus, Lactobacillus rhamnosus, Streptococcus thermophiles and mixed culture. The synthesis and analysis were concentrated on using multiple analytical techniques, including thermogravimetric analysis-differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, dynamic light scattering, and energy-dispersive X-ray spectroscopy. Major functional groups were identified by FTIR analysis that include conjugated ketones (C=O stretching) at 1648.82 cm−1 to 1688.54 cm−1, halo compounds (C–Br stretching) at 448.85 cm−1 to 879.54 cm−1, and fluoro compounds (C–F stretching) at 668.10 cm−1 to 1065.89 cm−1. Based on strain-specific measurements using SEM and TEM, the size of the nanoparticles ranged from 16 nm to 68.96 nm in diameter. Both extracellular and intracellular synthesis of the particles were identified. Significant amount of selenium were found using EDX analysis, with Lactobacillus rhamnosus and mix culture having the highest and the lowest concentrations at 97.50% and 90.58% by weight, respectively. Zeta potential measurements, indicating high colloidal stability, ranged from − 27.9 mV to − 23.1 mV and demonstrated that the nanoparticles synthesized by Lactobacillus rhamnosus was most stable among all. The synthesized nanoparticles were purely amorphous, according to XRD patterns. The TGA–DSC measurement showed that the nanoparticles exhibit varied levels of weight loss at different phases while being thermally stable. Lactobacillus rhamnosus showed maximum viability that is 8.67 log CFU/g and the least was seen in mix culture that is 7.22 log CFU/g. With applications in food fortification and biomedicine, this study highlights the potential of using probiotic strains for the synthesis of selenium nanoparticles. It also highlights an innovative approach that combines the fields of nanotechnology as well as biotechnology for sustainable and biocompatible solutions in the field of Food Science and Technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be provided on request.

References

  1. P.P. Reddy, M.S. Rao, Introduction to nanoscience and nanotechnology. Recent Trends Latest Innov. Life Sci., 56–96 (2022)

  2. M.K. Ray, A.K. Mishra, Y.K. Mohanta, S. Mahanta, I. Chakrabartty, N.A. Kungwani, R.N. Pudake, Nanotechnology as a promising tool against phytopathogens: a futuristic approach to agriculture. Agriculture 13(9), 1856–1895 (2023). https://doi.org/10.3390/agriculture13091856

    Article  CAS  Google Scholar 

  3. L.H. Duntas, S. Benvenga, Selenium: an element for life. Endocrine 48, 756–775 (2015). https://doi.org/10.1007/s12020-014-0477-6

    Article  CAS  PubMed  Google Scholar 

  4. J. Sarkar, D. Mridha, M.A. Davoodbasha, J. Banerjee, S. Chanda, K. Ray, J. Sarkar, A state-of-the-art systemic review on selenium nanoparticles: mechanisms and factors influencing biogenesis and its potential applications. Biol. Trace Elem. Res. (2023). https://doi.org/10.1007/s12011-022-03549-0

    Article  PubMed  Google Scholar 

  5. Z. Zhang, J. Lv, L. Pan, Y. Zhang, Roles and applications of probiotic Lactobacillus strains. Appl. Microbiol. Biotechnol. 102, 8135–8143 (2018). https://doi.org/10.1007/s00253-018-9217-9

    Article  CAS  PubMed  Google Scholar 

  6. R. Malaka, F. Maruddin, Z. Dwyana, M.V. Vargas, Assessment of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus ropy strain in different substrate media. Food Sci. Nutr. 8(3), 1657–1664 (2020). https://doi.org/10.1002/fsn3.1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A.L.B. Penna, A.T. Paula, S.N. Casarotti, V. Diamantino, L. Silva, Overview of the functional lactic acid bacteria in the fermented milk products. Benef. Microbes Fermented Funct. Foods 1, 100–154 (2015)

    Google Scholar 

  8. K. Spyridopoulou, E. Tryfonopoulou, G. Aindelis, P. Ypsilantis, C. Sarafidis, O. Kalogirou, K. Chlichlia, Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. Nanoscale Adv. 3(9), 2516–2528 (2021). https://doi.org/10.1039/D0NA00984A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S.K. Filippov, R. Khusnutdinov, A. Murmiliuk, W. Inam, L.Y. Zakharova, H. Zhang, V.V. Khutoryanskiy, Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results. Mater. Horiz. 10(12), 5354–5370 (2023). https://doi.org/10.1039/D3MH00717K

    Article  CAS  PubMed  Google Scholar 

  10. H. Alam, N. Khatoon, M.A. Khan, S.A. Husain, M. Saravanan, M. Sardar, Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. J. Clust. Sci. 31, 1003–1011 (2020). https://doi.org/10.1007/s10876-019-01705-6

    Article  CAS  Google Scholar 

  11. T. Shanmugasundaram, M. Radhakrishnan, V. Gopikrishnan, R. Pazhanimurugan, R. Balagurunathan, A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf. B 111, 680–687 (2013). https://doi.org/10.1016/j.colsurfb.2013.06.045

    Article  CAS  Google Scholar 

  12. B. Ozturk Kurt, S. Ozdemir, Selenium in food chain in relation to human and animal nutrition and health, in Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement (Cham: Springer International Publishing, 2022)

  13. C. Ferro, H.F. Florindo, H.A. Santos, Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Adv. Healthc. Mater. 10(16), 2100598 (2021). https://doi.org/10.1002/adhm.202100598

    Article  CAS  Google Scholar 

  14. S.F. Ahmed, M. Mofijur, N. Rafa, A.T. Chowdhury, S. Chowdhury, M. Nahrin, H.C. Ong, Green approaches in synthesising nanomaterials for environmental nanobioremediation: technological advancements, applications, benefits and challenges. Environ. Res. 204, 111967–111987 (2022). https://doi.org/10.1016/j.envres.2021.111967

    Article  CAS  PubMed  Google Scholar 

  15. M.A. Ruiz-Fresneda, L.C. Staicu, G. Lazuén-López, M.L. Merroun, Allotropy of selenium nanoparticles: colourful transition, synthesis, and biotechnological applications. Microbial Biotechnol. 16(5), 877–892 (2023). https://doi.org/10.1111/1751-7915.14209

    Article  CAS  Google Scholar 

  16. M. Kouhkan, P. Ahangar, L.A. Babaganjeh, M. Allahyari-Devin, Biosynthesis of copper oxide nanoparticles using Lactobacillus casei subsp. casei and its anticancer and antibacterial activities. Curr. Nanosci. 16(1), 101–111 (2020). https://doi.org/10.2174/1573413715666190318155801

    Article  CAS  Google Scholar 

  17. J. Liu, L. Shi, X. Tuo, X. Ma, X. Hou, S. Jiang, B. Han, Preparation, characteristic and anti-inflammatory effect of selenium nanoparticle-enriched probiotic strain Enterococcus durans A8-1. J. Trace Elem. Med. Biol. 74, 127056 (2022). https://doi.org/10.1016/j.jtemb.2022.127056

    Article  CAS  PubMed  Google Scholar 

  18. E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, E.B. Souto, Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10(2), 292 (2020). https://doi.org/10.3390/nano10020292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A.V. Tugarova, P.V. Mamchenkova, Y.A. Dyatlova, A.A. Kamnev, FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochim. Acta Part A: Mol. and Biomol. Spect. 192, 458–463 (2018). https://doi.org/10.1016/j.saa.2017.11.050

    Article  CAS  Google Scholar 

  20. R.G. Acres, V. Feyer, N. Tsud, E. Carlino, K.C. Prince, Mechanisms of aggregation of cysteine functionalized gold nanoparticles. J. Phys. Chem. 118(19), 10481–10487 (2014). https://doi.org/10.1021/jp502401w

    Article  CAS  Google Scholar 

  21. A.A. Kamnev, Y.A. Dyatlova, O.A. Kenzhegulov, A.A. Vladimirova, P.V. Mamchenkova, A.V. Tugarova, Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: sample preparation effects. Molecules 26(4), 1146 (2021). https://doi.org/10.3390/molecules26041146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. G. Moreno-Martin, M. Pescuma, T. Pérez-Corona, F. Mozzi, Y. Madrid, Determination of size and mass-and number-based concentration of biogenic SeNPs synthesized by lactic acid bacteria by using a multimethod approach. Anal. Chim. Acta 992, 34–41 (2017). https://doi.org/10.1016/j.aca.2017.09.033

    Article  CAS  PubMed  Google Scholar 

  23. S.M.A. Aziz Mousavi, S.A. Mirhosseini, M. Rastegar Shariat Panahi, H. Mahmoodzadeh Hosseini, Characterization of biosynthesized silver nanoparticles using lactobacillus rhamnosus GG and its in vitro assessment against colorectal cancer cells. Probiot. Antimicrob Proteins. 12, 740–746 (2020). https://doi.org/10.1007/s12602-019-09530-z

    Article  CAS  Google Scholar 

  24. J. Mikiciuk, E. Mikiciuk, A. Wrońska, A. Szterk, Antimicrobial potential of commercial silver nanoparticles and the characterization of their physical properties toward probiotic bacteria isolated from fermented milk products. J. Environ. Sci. Health Part B 51(4), 222–229 (2016). https://doi.org/10.1080/03601234.2015.1120614

    Article  CAS  Google Scholar 

  25. H.H. Salama, H.S. El-Sayed, N.S. Abd-Rabou, Z.M. Hassan, Production and use of eco-friendly selenium nanoparticles in the fortification of yoghurt. J. Food Process. Preserv. 45(6), e15510 (2021). https://doi.org/10.1111/jfpp.15510

    Article  CAS  Google Scholar 

  26. P. Eszenyi, A. Sztrik, B. Babka, J. Prokisch, Elemental, nano-sized (100–500 nm) selenium production by probiotic lactic acid bacteria. Int. J. Biosci. Biochem. Bioinform. 1(2), 148 (2011)

    Google Scholar 

  27. J. Prokisch, A. Sztrik, B. Babka, P. Eszenyi, J. Pardi, Z. Mika, M. Zommara, Novel Fermentation technology for production of selenium nanospheres (Lactomicrosel®) and its testing for feed and food applications, in 2nd International Conference on Selenium in the Environment and Human Health (China-Singapore Suzhou Industrial Park, Suzhou, 2021).

  28. E. Akanny, A. Bonhommé, C. Commun, A. Doleans-Jordheim, F. Bessueille, S. Bourgeois, C. Bordes, Development of uncoated near-spherical gold nanoparticles for the label-free quantification of Lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 411, 5563–5576 (2019). https://doi.org/10.1007/s00216-019-01938-4

    Article  CAS  PubMed  Google Scholar 

  29. G. Abdel-Maksoud, M. Abdel-Nasser, S.E.D. Hassan, A.M. Eid, A. Abdel-Nasser, A. Fouda, Biosynthesis of titanium dioxide nanoparticles using probiotic bacterial strain, Lactobacillus rhamnosus, and evaluate of their biocompatibility and antifungal activity. Biomass Convers. Biorefinery (2023). https://doi.org/10.1007/s13399-023-04587-x

    Article  Google Scholar 

  30. T. Huang, J.A. Holden, D.E. Heath, N.M. O’Brien-Simpson, A.J. O’Connor, Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale 11(31), 14937–14951 (2019). https://doi.org/10.1039/C9NR04424H

    Article  CAS  PubMed  Google Scholar 

  31. W. Tang, S. Han, J. Zhou, Q. Xu, M. Dong, X. Fan, W. Li, Selective fermentation of Lactobacillus delbrueckii ssp. Bulgaricus SRFM-1 derived exopolysaccharide by Lactobacillus and Streptococcus strains revealed prebiotic properties. J. Fun Foods 69, 103952 (2020). https://doi.org/10.1016/j.jff.2020.103952

    Article  CAS  Google Scholar 

  32. R. Fayed, A.M. Elnemr, M.M. El-Zahed, Synthesis, characterization, antimicrobial and electrochemical studies of biosynthesized zinc oxide nanoparticles using the probiotic Bacillus coagulans (ATCC 7050). J. Microbiol. Biotechnol. Food Sci. 13(3), e9962–e9962 (2023). https://doi.org/10.55251/jmbfs.9962

    Article  CAS  Google Scholar 

  33. K. Anu, S. Devanesan, R. Prasanth, M.S. AlSalhi, S. Ajithkumar, G. Singaravelu, Biogenesis of selenium nanoparticles and their anti-leukemia activity. J. King Saud Univ. Sci. 32(4), 2520–2526 (2020). https://doi.org/10.1016/j.jksus.2020.04.018

    Article  Google Scholar 

  34. M.C. Zambonino, E.M. Quizhpe, L. Mouheb, A. Rahman, S.N. Agathos, S.A. Dahoumane, Biogenic selenium nanoparticles in biomedical sciences: properties, current trends, novel opportunities and emerging challenges in theranostic nanomedicine. Nanomaterials 13(3), 424 (2023). https://doi.org/10.3390/nano13030424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Menon, H. Agarwal, S. Rajeshkumar, S.P. Jacquline Rosy, V.K. Shanmugam, Investigating the antimicrobial activities of the biosynthesized selenium nanoparticles and its statistical analysis. Bionanoscience 10, 122–135 (2020). https://doi.org/10.1007/s12668-019-00710-3

    Article  Google Scholar 

  36. M. Ashengroph, S.R. Hosseini, A newly isolated Bacillus amyloliquefaciens SRB04 for the synthesis of selenium nanoparticles with potential antibacterial properties. Int. Microbiol. 24, 103–114 (2021). https://doi.org/10.1007/s10123-020-00147-9

    Article  CAS  PubMed  Google Scholar 

  37. A.H. Hashem, S.S. Salem, Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnol. J. 17(2), 2100432–2100467 (2022). https://doi.org/10.1002/biot.202100432

    Article  CAS  Google Scholar 

  38. S.M. Zahedi, M.S. Hosseini, N. Daneshvar Hakimi Meybodi, W. Peijnenburg, Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. J. Sci. Food Agric. 101(12), 5202–5213 (2021). https://doi.org/10.1002/jsfa.11167

    Article  CAS  PubMed  Google Scholar 

  39. N.O. San Keskin, O. Akbal Vural, S. Abaci, Biosynthesis of noble selenium nanoparticles from Lysinibacillus sp. NOSK for antimicrobial, antibiofilm activity, and biocompatibility. Geomicrobiol J. 37(10), 919–928 (2022). https://doi.org/10.1080/01490451.2020.1799264

    Article  CAS  Google Scholar 

  40. W. Chen, Y. Li, S. Yang, L. Yue, Q. Jiang, W. Xia, Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles. Carbohydr. Polym. 132, 574–581 (2015). https://doi.org/10.1016/j.carbpol.2015.06.064

    Article  CAS  PubMed  Google Scholar 

  41. Y.M. Tilwani, A.K. Lakra, L. Domdi, N. Jha, V. Arul, Preparation, physicochemical characterization, and in vitro biological properties of selenium nanoparticle synthesized from exopolysaccharide of Enterococcus faecium MC-5. BioNanoScience 13(2), 413–425 (2023). https://doi.org/10.1007/s12668-023-01077-2

    Article  Google Scholar 

  42. M.T. Yilmaz, H. Ispirli, O. Taylan, E. Dertli, A green nano-biosynthesis of selenium nanoparticles with Tarragon extract: structural, thermal, and antimicrobial characterization. LWT 141, 110969 (2021). https://doi.org/10.1016/j.lwt.2021.110969

    Article  CAS  Google Scholar 

  43. C. Xu, L. Qiao, Y. Guo, L. Ma, Y. Cheng, Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydr. Polym. 195, 576–585 (2018). https://doi.org/10.1016/j.carbpol.2018.04.110

    Article  CAS  PubMed  Google Scholar 

  44. B. Khandsuren, J. Prokisch, Preparation of red and grey elemental selenium for food fortification. Acta Aliment. 50(2), 289–298 (2021). https://doi.org/10.1556/066.2020.00332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Poonia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V., Poonia, A. Microbial biosynthesis of selenium nanoparticles using probiotic strain and its characterization. Food Measure (2024). https://doi.org/10.1007/s11694-024-02581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02581-z

Keywords

Navigation