Skip to main content
Log in

Design and fabrication of an electrochemical sensor based on nanocomposite of dendritic polymer and reduced graphene oxide to measure sports nutrition lactate

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The design, development, and application of a new electrochemical sensor for the detection of lactate in athletes’ urine are described in this paper. Reduced graphene oxide (rGO) and poly(amidoamine) (PAMAM) dendritic polymers form the nanocomposite upon which the sensor is built. The PAMAM/rGO nanocomposite, which combines the robust structure and active sites of PAMAM with the high surface area and better conductivity of rGO, improves the sensitivity and selectivity of lactate detection. The sensor demonstrated a broad linear range from 1 to 3200 µM, a high sensitivity of 0.07907 µA/µM, and a detection limit of 0.017 µM. The selectivity of the sensor was deemed sufficient for the detection of lactate at physiologically relevant concentrations in the presence of common interfering chemicals. Furthermore, the sensor showed good repeatability, reproducibility, and long-term stability; over the course of a month, there was no appreciable decrease in sensitivity. Real sample analysis, where relative standard deviation (RSD) values were less than 4.09% and average recovery rates were above 98.00%, validated the procedure’s accuracy and precision. The suitability of the PAMAM/rGO-based sensor for measuring lactate levels in urine samples is demonstrated by these findings, which pave the way for the development of real-time, non-invasive sports nutrition monitoring devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Potgieter, South. Afr. J. Clin. Nutr. 26, 6 (2013)

    Article  Google Scholar 

  2. L.E. Heaton, J.K. Davis, E.S. Rawson, R.P. Nuccio, O.C. Witard, K.W. Stein, K. Baar, J.M. Carter, L.B. Baker, Sports Med. 47, 2201 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  3. L.M. Burke, L.M. Castell, D.J. Casa, G.L. Close, R.J. Costa, B. Desbrow, S.L. Halson, D.M. Lis, A.K. Melin, P. Peeling, Int. J. Sport Nutr. Exerc. Metab. 29, 73 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. A. Facey, R. Irving, L. Dilworth, Am. J. Sport Sci. Med. 1, 42 (2013)

    Google Scholar 

  5. G.A. Brooks, Cell Metabol. 27, 757 (2018)

    Article  CAS  Google Scholar 

  6. W. Jia, A.J. Bandodkar, G. Valdés-Ramírez, J.R. Windmiller, Z. Yang, J. Ramírez, G. Chan, J. Wang, Anal. Chem. 85, 6553 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. D. Calabria, C. Caliceti, M. Zangheri, M. Mirasoli, P. Simoni, A. Roda, Biosens. Bioelectron. 94, 124 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. X. Xuan, C. Perez-Rafols, C. Chen, M. Cuartero, G.A. Crespo, ACS Sens. 6, 2763 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Rattu, N. Khansili, V.K. Maurya, P.M. Krishna, Environ. Chem. Lett. 19, 1135 (2021)

    Article  CAS  Google Scholar 

  10. M.F.M. Shakhih, A.S. Rosslan, A.M. Noor, S. Ramanathan, A.M. Lazim, A.A. Wahab, J. Electrochem. Soc. 168, 067502 (2021)

    Article  CAS  Google Scholar 

  11. K. Rathee, V. Dhull, R. Dhull, S. Singh, Biochem. Biophys. Rep. 5, 35 (2016)

    PubMed  Google Scholar 

  12. Y. Shen, C. Liu, H. He, M. Zhang, H. Wang, K. Ji, L. Wei, X. Mao, R. Sun, F. Zhou, Biosensors 12, 1164 (2022)

  13. T.C. Pereira, N.R. Stradiotto, Microchim. Acta. 186, 1 (2019)

    Article  Google Scholar 

  14. S. Kumar, S.D. Bukkitgar, S. Singh, V. Pratibha, K.R. Singh, N.P. Reddy, C. Shetti, V. Venkata Reddy, S. Sadhu, Naveen, ChemistrySelect 4, 5322 (2019)

  15. T.A. Tabish, Y. Zhu, S. Shukla, S. Kadian, G.S. Sangha, C.A. Lygate, R.J. Narayan, Appl. Phys. Reviews. 10, 1 (2023)

    Article  Google Scholar 

  16. W. Hu, Y. Ma, Z. Zhan, D. Hussain, C. Hu, Cyborg and Bionic Systems 2022, (2022)

  17. I. Hussain, N. Muhammad, Q. Subhani, D. Shou, M. Jin, L. Yu, G. Lu, X. Wen, A. Intisar, Z. Yan, TRAC Trends Anal. Chem. 1, 116810 (2022)

    Article  Google Scholar 

  18. M. Delyanee, S. Akbari, A. Solouk, Eur. J. Med. Chem. 221, 113572 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. R.Y. Patle, J.S. Meshram, Reaction Chem. Eng. 7, 9 (2022)

    Article  CAS  Google Scholar 

  20. M. Pandey, H.X. Lang, J.S. Loh, M.C.Y. Ling, F.T.H. Long, J. Mayuren, M. Candasamy, B. Gorain, N. Jain, G. Gupta, J. Drug Deliv. Sci. Technol. 1, 104589 (2023)

    Article  Google Scholar 

  21. M. Elancheziyan, K. Theyagarajan, D. Saravanakumar, K. Thenmozhi, S. Senthilkumar, Mater. Today Chem. 16, 100274 (2020)

    Article  CAS  Google Scholar 

  22. M. Elancheziyan, S. Senthilkumar, Appl. Surf. Sci. 495, 143540 (2019)

    Article  CAS  Google Scholar 

  23. Q. Zhao, S. Yan, B. Zhang, K. Fan, J. Zhang, W. Li, Cyborg Bionic Syst. 4, (2023)

  24. M. Singh, T. Dawsey, R.K. Gupta, J. Energy Storage. 73, 109059 (2023)

    Article  Google Scholar 

  25. A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S.H.M. Jafri, H. Li, Materials. 15, 1012 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu, Z. Xie, F. Guo, D. Chen, R. Zhang, Y. Zheng, Sens. Actuators B 337, 129783 (2021)

    Article  CAS  Google Scholar 

  27. X. Zhu, T. Wan, M. Chen, S. Wang, Y. Zhang, G. Yuan, X. Liu, B. Cheng, J. Alloys Compd. 954, 170185 (2023)

    Article  CAS  Google Scholar 

  28. G. Lu, L. Duan, S. Meng, P. Cai, S. Ding, X. Wang, Dyes Pigm. 220, (2023)

  29. S. Biswas, A. Kole, C. Tiwary, P. Kumbhakar, RSC Adv. 6, 10319 (2016)

    Article  CAS  Google Scholar 

  30. P. Jin, Y. Fu, R. Niu, Q. Zhang, M. Zhang, Z. Li, X. Zhang, Foods 12, (2023)

  31. R. Bai, Y. Zhao, C. Lu, Y. Meng, W. Gao, Y. Wang, R. Dang, M. Mu, J. Wang, Y. Jiao, J. Chem. Res. 47, 17475198231158745 (2023)

    Article  CAS  Google Scholar 

  32. T. Wang, S. Yang, L. Wang, H. Feng, PLoS One. 10, e0124735 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Q. Wang, J. Zhang, Y. Xu, Y. Wang, L. Wu, X. Weng, C. You, J. Feng, Anal. Methods. 13, 56 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. M. Jannesari, O. Akhavan, H.R.M. Hosseini, B. Bakhshi, J. Colloid Interface Sci. 637, 237 (2023)

    Article  CAS  PubMed  Google Scholar 

  35. W. Huang, J. Xia, X. Wang, Q. Zhao, M. Zhang, X. Zhang, Food Control 153, (2023)

  36. A.T. Dideikin, A.Y. Vul’, Front. Phys. 6, 149 (2019)

    Article  Google Scholar 

  37. P. Bansal, A.S. Panwar, D. Bahadur, J. Phys. Chem. C 121, 9847 (2017)

    Article  CAS  Google Scholar 

  38. M. Sedki, P.S. Mirabedini, K. Nakama, G. Stephens, M. Groves, I. Lee, M.R. Neupane, A. Mulchandani, Carbon. 186, 437 (2022)

    Article  CAS  Google Scholar 

  39. M. Liu, Z. Hou, B. Huang, L. Gou, P. Zhang, J. Appl. Polym. Sci. 134, 45172 (2017)

    Article  Google Scholar 

  40. X. Geng, R. Qu, X. Kong, S. Geng, Y. Zhang, C. Sun, C. Ji, Front. Chem. 9, 743429 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Nonahal, H. Rastin, M.R. Saeb, M.G. Sari, M.H. Moghadam, P. Zarrintaj, B. Ramezanzadeh, Prog. Org. Coat. 114, 233 (2018)

    Article  CAS  Google Scholar 

  42. F. Fayyazi, D.F. Haghshenas, E. Kowsari, A. Ghazitabar, J. Mol. Liq. 386, 122512 (2023)

    Article  CAS  Google Scholar 

  43. S. Priyanka, K. Latha, Chem. Data Collections. 35, 100769 (2021)

    Article  CAS  Google Scholar 

  44. R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, M. Izumi, Biosens. Bioelectron. 40, 422 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. Z. Lyu, L. Ding, A.-T. Huang, C.-L. Kao, L. Peng, Mater. Today Chem. 13, 34 (2019)

    Article  CAS  Google Scholar 

  46. S.M. Fatemi, S.J. Fatemi, Z. Abbasi, Polym. Bull. 77, 6671 (2020)

    Article  CAS  Google Scholar 

  47. I. González-Méndez, E. Loera-Loera, K. Sorroza-Martínez, M. Vonlanthen, F. Cuétara-Guadarrama, M.J. Bernad-Bernad, E. Rivera, J. Gracia-Mora Pharm. 14, 2363 (2022)

    Google Scholar 

  48. P. Das, A.B. Deoghare, S.R. Maity, Arab. J. Sci. Eng. 46, 5467 (2021)

    Article  CAS  Google Scholar 

  49. S. Navalón, J.R. Herance, M. Álvaro, H. García, Mater. Horiz. 5, 363 (2018)

    Article  Google Scholar 

  50. X. Xiang, Y. Zhu, C. Gao, H. Du, C. Guo, Carbon Lett. 32, 557 (2022)

    Article  Google Scholar 

  51. Z. Yu, J. Xu, Y. Li, H. Gong, Q. Wei, D. Tang, J. Mater. Chem. C 9, 14351 (2021)

    Article  CAS  Google Scholar 

  52. T. Stoisser, D. Rainer, S. Leitgeb, D.K. Wilson, B. Nidetzky, FEBS J. 282, 562 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. M. Yu, Y.-T. Li, Y. Hu, L. Tang, F. Yang, W.-L. Lv, Z.-Y. Zhang, G.-J. Zhang, J. Electroanal. Chem. 882, 115029 (2021)

    Article  CAS  Google Scholar 

  54. O. Ozoglu, A. Uzunoglu, M.A. Unal, M. Gumustas, S.A. Ozkan, M. Korukluoglu, E. Gunes, Altuntas, J. Biosci. Bioeng. 135, 313 (2023)

    Article  CAS  PubMed  Google Scholar 

  55. R. Sainz, M. Pozo, L. Vázquez, M. Vilas-Varela, J. Castro-Esteban, E. Blanco, M.D. Petit-Domínguez, C. Quintana, E. Casero, Anal. Chim. Acta. 1208, 339851 (2022)

    Article  CAS  PubMed  Google Scholar 

  56. J.B. Claver, M.V. Mirón, L. Capitán-Vallvey, Analyst 134, 1423 (2009)

  57. T. Yamazaki, T. Ikeda, B. Lim, K. Okumura, M. Ishida, K. Sawada, Journal of Sensors 2011, 190284 (2011)

  58. N. Nesakumar, K. Thandavan, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, J. Colloid Interface Sci. 414, 90 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. M.M. Rahman, M.J.A. Shiddiky, M.A. Rahman, Y.-B. Shim, Anal. Biochem. 384, 159 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lin, C. Design and fabrication of an electrochemical sensor based on nanocomposite of dendritic polymer and reduced graphene oxide to measure sports nutrition lactate. Food Measure (2024). https://doi.org/10.1007/s11694-024-02572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02572-0

Keywords

Navigation