Skip to main content
Log in

PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The dendrimer has a high degree of geometric symmetry, a precise and controllable molecular size, a large number of surface-active functional groups, a rich cavity inside the molecule, and a controlled molecular chain growth. The unique structural properties of the above-mentioned macromolecules have made it a research hot spot in many fields. Molecular simulation technology, as a new scientific research method, plays an important role in the basic theory and applied research of dendrimers. This paper reviews the basic progress of molecular simulation technology in the field of dendrimers in recent years, including the application of dendrimers in medicine, DNA, pharmaceutical carriers, proteins, amino acids, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Buhleier E, Wehner W, Vögtle F (1978) ‘Cascade’- and ‘Nonskid-chain-like’ syntheses of molecular cavity topologies. Chem Inf 9 25:228

    Google Scholar 

  2. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117

    CAS  Google Scholar 

  3. Tomalia DA, Fréchet JM (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A Polym Chem 40:2719–2728

    CAS  Google Scholar 

  4. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW et al (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247

    PubMed  PubMed Central  Google Scholar 

  5. Lee CC, MacKay JA, Fréchet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517

    CAS  PubMed  Google Scholar 

  6. Vögtle F, Richardt G, Werner N (2009) Dendrimer chemistry: concepts, syntheses, properties, applications. Wiley, Hoboken

    Google Scholar 

  7. Tang Z (2017) Research progress on synthesis and characteristic about dendrimers. In: IOP conference series: earth and environmental science. IOP Publishing, vol 100, p 012024

  8. Cloninger MJ (2002) Biological applications of dendrimers. Curr Opin Chem Biol 6:742–748

    CAS  PubMed  Google Scholar 

  9. Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190

    CAS  PubMed  Google Scholar 

  10. Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea G, Sosa-Ferreyra C et al (2014) Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014:39

    Google Scholar 

  11. Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60:1037–1055

    CAS  PubMed  Google Scholar 

  12. Cheng Y, Wang J, Rao T, He X, Xu T (2008) Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci 13:1447–1471

    CAS  PubMed  Google Scholar 

  13. Joshi N, Grinstaff M (2008) Applications of dendrimers in tissue engineering. Curr Top Med Chem 8:1225–1236

    PubMed  Google Scholar 

  14. Somani S, Dufès C (2014) Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine 9:2403–2414

    CAS  PubMed  Google Scholar 

  15. Astruc D, Ornelas C, Ruiz J (2008) Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. Acc Chem Res 41:841–856

    CAS  PubMed  Google Scholar 

  16. Niu Y, Crooks RM (2003) Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C R Chim 6:1049–1059

    CAS  Google Scholar 

  17. Astruc D, Ornelas C, Aranzaes JR (2008) Ferrocenyl-terminated dendrimers: design for applications in molecular electronics, molecular recognition and catalysis. J Inorg Organomet Polym Mater 18:4–17

    CAS  Google Scholar 

  18. Bergamini G, Marchi E, Ceroni P (2011) Metal ion complexes of cyclam-cored dendrimers for molecular photonics. Coord Chem Rev 255:2458–2468

    CAS  Google Scholar 

  19. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    CAS  PubMed  Google Scholar 

  20. Langereis S, Dirksen A, Hackeng TM, Van Genderen MH, Meijer E (2007) Dendrimers and magnetic resonance imaging. New J Chem 31:1152–1160

    CAS  Google Scholar 

  21. Dufes C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    CAS  PubMed  Google Scholar 

  22. Yokoyama S, Otomo A, Nakahama T, Okuno Y, Mashiko S (2003) Dendrimers for optoelectronic applications. In: Schalley CA, Vögtle F (eds) Dendrimers V. Topics in current chemistry, vol 228. Springer, Berlin, Heidelberg, pp 205–226

    Google Scholar 

  23. Kovvali AS, Sirkar K (2001) Dendrimer liquid membranes: CO2 separation from gas mixtures. Ind Eng Chem Res 40:2502–2511

    CAS  Google Scholar 

  24. Szymański P, Markowicz M, Mikiciuk-Olasik E (2011) Nanotechnology in pharmaceutical and biomedical applications: dendrimers. Nano 6:509–539

    Google Scholar 

  25. Caminade A-M, Ouali A, Laurent R, Turrin C-O, Majoral J-P (2016) Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord Chem Rev 308:478–497

    CAS  Google Scholar 

  26. Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 50:2003–2004

    CAS  Google Scholar 

  27. Wiesler U-M, Berresheim A, Morgenroth F, Lieser G, Müllen K (2001) Divergent synthesis of polyphenylene dendrimers: the role of core and branching reagents upon size and shape. Macromolecules 34:187–199

    CAS  Google Scholar 

  28. Boris D, Rubinstein M (1996) A self-consistent mean field model of a starburst dendrimer: dense core vs dense shell. Macromolecules 29:7251–7260

    CAS  Google Scholar 

  29. Hawker CJ, Frechet JM (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647

    CAS  Google Scholar 

  30. Grayson SM, Frechet JM (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3868

    CAS  PubMed  Google Scholar 

  31. Twibanire JDAK, Grindley TB (2014) Polyester dendrimers: smart carriers for drug delivery. Polymers 6:179–213

    Google Scholar 

  32. Roy R, Shiao TC (2015) Glyconanosynthons as powerful scaffolds and building blocks for the rapid construction of multifaceted, dense and chiral dendrimers. Chem Soc Rev 44:3924–3941

    CAS  PubMed  Google Scholar 

  33. Smith G, Chen R, Mapolie S (2003) The synthesis and catalytic activity of a first-generation poly (propylene imine) pyridylimine palladium metallodendrimer. J Organomet Chem 673:111–115

    CAS  Google Scholar 

  34. Zheng Z-J, Chen J, Li Y-S (2004) The synthesis and catalytic activity of poly (bis (imino) pyridyl) iron (II) metallodendrimer. J Organomet Chem 689:3040–3045

    CAS  Google Scholar 

  35. Luo K, Li C, Li L, She W, Wang G, Gu Z (2012) Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials 33:4917–4927

    CAS  PubMed  Google Scholar 

  36. Caminade A-M, Ouali A, Laurent R, Turrin C-O, Majoral J-P (2015) The dendritic effect illustrated with phosphorus dendrimers. Chem Soc Rev 44:3890–3899

    CAS  PubMed  Google Scholar 

  37. Fukuzumi S, Saito K, Ohkubo K, Khoury T, Kashiwagi Y, Absalom MA et al (2011) Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor. Chem Commun 47:7980–7982

    CAS  Google Scholar 

  38. Campos B, Algarra M, Alonso B, Casado C, Jiménez-Jiménez J, Rodríguez-Castellón E et al (2015) Fluorescent sensor for Cr(VI) based in functionalized silicon quantum dots with dendrimers. Talanta 144:862–867

    CAS  PubMed  Google Scholar 

  39. Lim J, Simanek EE (2012) Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv Drug Deliv Rev 64:826–835

    CAS  PubMed  Google Scholar 

  40. Xu X, Jian Y, Li Y, Zhang X, Tu Z, Gu Z (2014) Bio-inspired supramolecular hybrid dendrimers self-assembled from low-generation peptide dendrons for highly efficient gene delivery and biological tracking. ACS Nano 8:9255–9264

    CAS  PubMed  Google Scholar 

  41. Najlah M, Freeman S, Khoder M, Attwood D, D’Emanuele A (2017) In vitro evaluation of third generation PAMAM dendrimer conjugates. Molecules 22:1661

    PubMed Central  Google Scholar 

  42. Dvornic PR (2006) PAMAMOS: the first commercial silicon-containing dendrimers and their applications. J Polym Sci Part A Polym Chem 44:2755–2773

    CAS  Google Scholar 

  43. Bhargava M, Bhargava S, Bhargava V (2017) P3. 02c-002 Mannosylated poly (propylene imine) dendrimer mediated lung delivery of anticancer bioactive: topic: targeted therapy. J Thorac Oncol 12:S1272

    Google Scholar 

  44. Lataifeh A, Kraatz H-B (2019) Self-assembly of silver nanoparticles-low generation peptide dendrimer conjugates into poly-l-lysine. Mater Lett 254:353–356

    CAS  Google Scholar 

  45. Pande S, Crooks RM (2011) Analysis of poly (amidoamine) dendrimer structure by UV–Vis spectroscopy. Langmuir 27:9609–9613

    CAS  PubMed  Google Scholar 

  46. Castagnola M, Zuppi C, Rossetti DV, Vincenzoni F, Lupi A, Vitali A et al (2002) Characterization of dendrimer properties by capillary electrophoresis and their use as pseudostationary phases. Electrophoresis 23:1769–1778

    CAS  PubMed  Google Scholar 

  47. Soininen AJ, Kasëmi E, Schlüter AD, Ikkala O, Ruokolainen J, Mezzenga R (2010) Self-assembly and induced circular dichroism in dendritic supramolecules with cholesteric pendant groups. J Am Chem Soc 132:10882–10890

    CAS  PubMed  Google Scholar 

  48. Appelhans D, Oertel U, Mazzeo R, Komber H, Hoffmann J, Weidner S et al (2009) Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation. Proc R Soc A Math Phys Eng Sci 466:1489–1513

    Google Scholar 

  49. Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3:39

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan Z, Xu M, Cheung EY, Harris KD, Constable EC, Housecroft CE (2006) Understanding the structural properties of a dendrimeric material directly from powder X-ray diffraction data. J Phys Chem B 110:11620–11623

    CAS  PubMed  Google Scholar 

  51. Gautam SP, Gupta AK, Agrawal S, Sureka S (2012) Spectroscopic characterization of dendrimers. Int J Pharm Pharm Sci 4:77–80

    CAS  Google Scholar 

  52. Porcar L, Liu Y, Verduzco R, Hong K, Butler PD, Magid LJ et al (2008) Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J Phys Chem B 112:14772–14778

    CAS  PubMed  Google Scholar 

  53. Mullen DG, Desai A, van Dongen MA, Barash M, Baker JR Jr, Banaszak Holl MM (2012) Best practices for purification and characterization of PAMAM dendrimer. Macromolecules 45:5316–5320

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Giordanengo R, Mazarin M, Wu J, Peng L, Charles L (2007) Propagation of structural deviations of poly (amidoamine) fan-shape dendrimers (generations 0–3) characterized by MALDI and electrospray mass spectrometry. Int J Mass Spectrom 266:62–75

    CAS  Google Scholar 

  55. Biricova V, Laznickova A (2009) Dendrimers: analytical characterization and applications. Bioorg Chem 37:185–192

    CAS  PubMed  Google Scholar 

  56. Zhou L, Russell DH, Zhao M, Crooks RM (2001) Characterization of poly (amidoamine) dendrimers and their complexes with Cu2+ by matrix-assisted laser desorption ionization mass spectrometry. Macromolecules 34:3567–3573

    CAS  Google Scholar 

  57. Najlah M, Freeman S, Attwood D, D’Emanuele A (2006) Synthesis, characterization and stability of dendrimer prodrugs. Int J Pharm 308:175–182

    CAS  PubMed  Google Scholar 

  58. Xu TH, Lu R, Qiu XP, Liu XL, Xue PC, Tan CH et al (2006) Synthesis and characterization of carbazole-based dendrimers with porphyrin cores. Eur J Org Chem 2006:4014–4020

    Google Scholar 

  59. Carr PL, Davies GR, Feast WJ, Stainton NM, Ward IM (1996) Dielectric and mechanical characterization of aryl ester dendrimer/PET blends. Polymer 37:2395–2401

    CAS  Google Scholar 

  60. Tintaru A, Ungaro R, Liu X, Chen C, Giordano L, Peng L et al (2015) Structural characterization of new defective molecules in poly (amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance. Anal Chim Acta 853:451–459

    CAS  PubMed  Google Scholar 

  61. Sharma A, Gautam SP, Gupta AK (2011) Surface modified dendrimers: synthesis and characterization for cancer targeted drug delivery. Bioorg Med Chem 19:3341–3346

    CAS  PubMed  Google Scholar 

  62. Popescu M-C, Filip D, Vasile C, Cruz C, Rueff J, Marcos M et al (2006) Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer. J Phys Chem B 110:14198–14211

    CAS  PubMed  Google Scholar 

  63. Li J, Piehler L, Qin D, Baker J, Tomalia D, Meier D (2000) Visualization and characterization of poly (amidoamine) dendrimers by atomic force microscopy. Langmuir 16:5613–5616

    CAS  Google Scholar 

  64. Shi X, Sun K, Balogh LP, Baker JR Jr (2006) Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17:4554

    CAS  Google Scholar 

  65. Xia C, Fan X, Locklin J, Advincula RC, Gies A, Nonidez W (2004) Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers. J Am Chem Soc 126:8735–8743

    CAS  PubMed  Google Scholar 

  66. Baytekin B, Werner N, Luppertz F, Engeser M, Brüggemann J, Bitter S et al (2006) How useful is mass spectrometry for the characterization of dendrimers?:“Fake defects” in the ESI and MALDI mass spectra of dendritic compounds. Int J Mass Spectrom 249:138–148

    Google Scholar 

  67. Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM, Barrett MO et al (2010) Polyamidoamine (PAMAM) dendrimer conjugates of “clickable” agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjug Chem 21:372–384

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Åkesson A, Lind TK, Barker R, Hughes A, Cárdenas M (2012) Unraveling dendrimer translocation across cell membrane mimics. Langmuir 28:13025–13033

    PubMed  Google Scholar 

  69. Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 30:294–324

    CAS  Google Scholar 

  70. Foroutan M, Fatemi SM, Darvishi M (2018) Formation and stability of water clusters at the molybdenum disulfide interface: a molecular dynamics simulation investigation. J Phys Condens Matter 30:415001

    PubMed  Google Scholar 

  71. Foroutan M, Darvishi M, Fatemi SM, Babazadeh KH (2018) Water chain formation on rutile TiO2 (110) nanocrystal: a molecular dynamics simulation approach. J Mol Liq 250:344–352

    CAS  Google Scholar 

  72. Foroutan M, Fatemi SM, Esmaeilian F (2017) A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur Phys J E 40:19

    PubMed  Google Scholar 

  73. Foroutan M, Darvishi M, Fatemi SM (2017) Structural and dynamical characterization of water on the Au (100) and graphene surfaces: a molecular dynamics simulation approach. Phys Rev E 96:033312

    PubMed  Google Scholar 

  74. Fatemi SM, Foroutan M (2015) Study of dispersion of carbon nanotubes by Triton X-100 surfactant using molecular dynamics simulation. J Iran Chem Soc 12:1905–1913

    CAS  Google Scholar 

  75. Miklis P, Çaǧin T, Goddard WA (1997) Dynamics of Bengal Rose encapsulated in the Meijer dendrimer box. J Am Chem Soc 119:7458–7462

    CAS  Google Scholar 

  76. Ivanov AA, Jacobson KA (2008) Molecular modeling of a PAMAM-CGS21680 dendrimer bound to an A2A adenosine receptor homodimer. Bioorg Med Chem Lett 18:4312–4315

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chasse TL, Sachdeva R, Li Q, Li Z, Petrie RJ, Gorman CB (2003) Structural effects on encapsulation as probed in redox-active core dendrimer isomers. J Am Chem Soc 125:8250–8254

    CAS  PubMed  Google Scholar 

  78. Barra PA, Barraza L, Jiménez VA, Gavín JA, Alderete JB (2014) Complexation of mefenamic acid by low-generation PAMAM dendrimers: insight from nmr spectroscopy studies and molecular dynamics simulations. Macromol Chem Phys 215:372–383

    CAS  Google Scholar 

  79. Caballero J, Poblete H, Navarro C, Alzate-Morales JH (2013) Association of nicotinic acid with a poly (amidoamine) dendrimer studied by molecular dynamics simulations. J Mol Graph Model 39:71–78

    CAS  PubMed  Google Scholar 

  80. Giri J, Diallo MS, Simpson AJ, Liu Y, Goddard WA III, Kumar R et al (2011) Interactions of poly (amidoamine) dendrimers with human serum albumin: binding constants and mechanisms. ACS Nano 5:3456–3468

    CAS  PubMed  Google Scholar 

  81. Maingi V, Kumar MVS, Maiti PK (2012) PAMAM dendrimer–drug interactions: effect of pH on the binding and release pattern. J Phys Chem B 116:4370–4376

    CAS  PubMed  Google Scholar 

  82. Tanis I, Karatasos K (2009) Association of a weakly acidic anti-inflammatory drug (ibuprofen) with a poly (amidoamine) dendrimer as studied by molecular dynamics simulations. J Phys Chem B 113:10984–10993

    CAS  PubMed  Google Scholar 

  83. Zhang F-D, Liu Y, Xu J-C, Li S-J, Wang X-N, Sun Y et al (2015) Binding and conformation of dendrimer-based drug delivery systems: a molecular dynamics study. Adv Manuf 3:221–231

    CAS  Google Scholar 

  84. Maiti PK, Bagchi B (2006) Structure and dynamics of DNA—dendrimer complexation: role of counterions, water, and base pair sequence. Nano Lett 6:2478–2485

    CAS  PubMed  Google Scholar 

  85. Nandy B, Maiti PK (2010) DNA compaction by a dendrimer. J Phys Chem B 115:217–230

    PubMed  Google Scholar 

  86. Yu S, Larson RG (2014) Monte-Carlo simulations of PAMAM dendrimer–DNA interactions. Soft Matter 10:5325–5336

    CAS  Google Scholar 

  87. Márquez-Miranda V, Camarada MB, Araya-Durán I, Varas-Concha I, Almonacid DE, González-Nilo FD (2015) Biomimetics: from bioinformatics to rational design of dendrimers as gene carriers. PLoS ONE 10:e0138392

    PubMed  PubMed Central  Google Scholar 

  88. Márquez-Miranda V, Peñaloza JP, Araya-Durán I, Reyes R, Vidaurre S, Romero V et al (2016) Effect of terminal groups of dendrimers in the complexation with antisense oligonucleotides and cell uptake. Nanoscale Res Lett 11:66

    PubMed  PubMed Central  Google Scholar 

  89. Pavan GM, Mintzer MA, Simanek EE, Merkel OM, Kissel T, Danani A (2010) Computational insights into the interactions between DNA and siRNA with “rigid” and “flexible” triazine dendrimers. Macromolecules 11:721–730

    CAS  Google Scholar 

  90. Ainalem M-L, Nylander T (2011) DNA condensation using cationic dendrimers—morphology and supramolecular structure of formed aggregates. Soft Matter 7:4577–4594

    CAS  Google Scholar 

  91. Zhong T, Ai P, Zhou J (2011) Structures and properties of PAMAM dendrimer: a multi-scale simulation study. Fluid Phase Equilib 302:43–47

    CAS  Google Scholar 

  92. Yang L, da Rocha SR (2014) PEGylated, NH2-terminated PAMAM dendrimers: a microscopic view from atomistic computer simulations. Mol Pharm 11:1459–1470

    CAS  PubMed  Google Scholar 

  93. Lin X, Bai T, Zuo YY, Gu N (2014) Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations. Nanoscale 6:2759–2767

    CAS  PubMed  Google Scholar 

  94. Maiti PK, Çaǧın T, Wang G, Goddard WA (2004) Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 37:6236–6254

    CAS  Google Scholar 

  95. Charles S, Vasanthan N, Kwon D, Sekosan G, Ghosh S (2012) Surface modification of poly (amidoamine)(PAMAM) dendrimer as antimicrobial agents. Tetrahedron Lett 53:6670–6675

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ding H-M, Tian W-D, Ma Y-Q (2012) Designing nanoparticle translocation through membranes by computer simulations. ACS Nano 6:1230–1238

    CAS  PubMed  Google Scholar 

  97. Tu CK, Chen K, Tian WD, Ma YQ (2013) Computational investigations of a peptide-modified dendrimer interacting with lipid membranes. Macromol Rapid Commun 34:1237–1242

    CAS  PubMed  Google Scholar 

  98. Ma Y-Q (2012) pH-responsive dendrimers interacting with lipid membranes. Soft Matter 8:2627–2632

    Google Scholar 

  99. Lyulin SV, Vattulainen I, Gurtovenko AA (2008) Complexes comprised of charged dendrimers, linear polyelectrolytes, and counterions: insight through coarse-grained molecular dynamics simulations. Macromolecules 41:4961–4968

    CAS  Google Scholar 

  100. Lyulin SV, Evers L, van der Schoot P, Darinskii AA, Lyulin AV, Michels M (2004) Effect of solvent quality and electrostatic interactions on size and structure of dendrimers. Brownian dynamics simulation and mean-field theory. Macromolecules 37:3049–3063

    CAS  Google Scholar 

  101. Lyulin SV, Darinskii AA, Lyulin AV, Michels M (2004) Computer simulation of the dynamics of neutral and charged dendrimers. Macromolecules 37:4676–4685

    CAS  Google Scholar 

  102. Tian W-D, Ma Y-Q (2010) Complexation of a linear polyelectrolyte with a charged dendrimer: polyelectrolyte stiffness effects. Macromolecules 43:1575–1582

    CAS  Google Scholar 

  103. Wang Y-L, Lu Z-Y, Laaksonen A (2012) Specific binding structures of dendrimers on lipid bilayer membranes. Phys Chem Chem Phys 14:8348–8359

    CAS  PubMed  Google Scholar 

  104. Yan L-T, Yu X (2009) Charged dendrimers on lipid bilayer membranes: insight through dissipative particle dynamics simulations. Macromolecules 42:6277–6283

    CAS  Google Scholar 

  105. Terao T, Nakayama T (2004) Molecular dynamics study of dendrimers: structure and effective interaction. Macromolecules 37:4686–4694

    CAS  Google Scholar 

  106. Gurtovenko AA, Lyulin SV, Karttunen M, Vattulainen I (2006) Molecular dynamics study of charged dendrimers in salt-free solution: effect of counterions. J Chem Phys 124:094904

    Google Scholar 

  107. Guo XD, Zhang LJ, Wu ZM, Qian Y (2010) Dissipative particle dynamics studies on microstructure of pH-sensitive micelles for sustained drug delivery. Macromolecules 43:7839–7844

    CAS  Google Scholar 

  108. Guo XD, Zhang LJ, Qian Y (2012) Systematic multiscale method for studying the structure–performance relationship of drug-delivery systems. Ind Eng Chem Res 51:4719–4730

    CAS  Google Scholar 

  109. Luo Z, Jiang J (2012) pH-sensitive drug loading/releasing in amphiphilic copolymer PAE–PEG: integrating molecular dynamics and dissipative particle dynamics simulations. J Control Release 162:185–193

    CAS  PubMed  Google Scholar 

  110. Maiti PK, Goddard WA (2006) Solvent quality changes the structure of G8 PAMAM dendrimer, a disagreement with some experimental interpretations. J Phys Chem B 110:25628–25632

    CAS  PubMed  Google Scholar 

  111. Chen S, Pan M, Tian W (2014) Computational study of the interaction between PAMAM dendrimer and KALP peptide. Acta Polym Sin 8:1062–1069

    Google Scholar 

  112. Schneider CP, Shukla D, Trout BL (2011) Effects of solute–solute interactions on protein stability studied using various counterions and dendrimers. PLoS ONE 6:e27665

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rahimi A, Amjad-Iranagh S, Modarress H (2016) Molecular dynamics simulation of coarse-grained poly (l-lysine) dendrimers. J Mol Model 22:59

    PubMed  Google Scholar 

  114. Roberts BP, Scanlon MJ, Krippner GY, Chalmers DK (2009) Molecular dynamics of poly (l-lysine) dendrimers with naphthalene disulfonate caps. Macromolecules 42:2775–2783

    CAS  Google Scholar 

  115. Neelov I, Markelov D, Falkovich S, Ilyash MY, Okrugin B, Darinskii A (2013) Mathematical simulation of lysine dendrimers: temperature dependences. Polym Sci Ser C 55:154–161

    CAS  Google Scholar 

  116. Kavyani S, Amjad-Iranagh S, Modarress H (2014) Aqueous poly (amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study. J Phys Chem B 118:3257–3266

    CAS  PubMed  Google Scholar 

  117. Lee H, Larson RG (2008) Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape. J Phys Chem B 112:12279–12285

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee H, Choi JS, Larson RG (2011) Molecular dynamics studies of the size and internal structure of the PAMAM dendrimer grafted with arginine and histidine. Macromolecules 44:8681–8686

    CAS  Google Scholar 

  119. Fatemi SM, Foroutan M (2016) Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J Nanostruct Chem 6:29–40

    CAS  Google Scholar 

  120. Fatemi SM, Foroutan M (2014) Study of the dynamic behavior of boron nitride nanotube (BNNT) and triton surfactant complexes using molecular dynamics simulations. Adv Sci Eng Med 6:583–590

    CAS  Google Scholar 

  121. Fatemi SM, Foroutan M (2015) Recent findings about ionic liquids mixtures obtained by molecular dynamics simulation. J Nanostruct Chem 5:243–253

    CAS  Google Scholar 

  122. Fatemi S, Foroutan M (2016) Review on carbon nanotubes and carbon nanotube bundles for gas/ion separation and water purification studied by molecular dynamics simulation. Int J Environ Sci Technol 13:457–470

    CAS  Google Scholar 

  123. Fatemi SM, Foroutan M (2014) Study of dispersion of boron nitride nanotubes by triton X-100 surfactant using molecular dynamics simulations. J Theor Comput Chem 13:1450063

    CAS  Google Scholar 

  124. Wolski P, Panczyk T (2019) Conformational properties of PAMAM dendrimers adsorbed on the gold surface studied by molecular dynamics simulation. J Phys Chem C 123:22603–22613

    CAS  Google Scholar 

  125. Jin Y-J, Luo Y-J, Li G-P, Li J, Wang Y-F, Yang R-Q et al (2008) Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection. Forensic Sci Int 179:34–38

    CAS  PubMed  Google Scholar 

  126. Yang H, Kao WJ (2006) Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polym Ed 17:3–19

    CAS  PubMed  Google Scholar 

  127. Maiyalagan T (2009) Pt–Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation. J Solid State Electrochem 13:1561–1566

    CAS  Google Scholar 

  128. Soršak E, Valh JV, Urek ŠK, Lobnik A (2015) Application of PAMAM dendrimers in optical sensing. Analyst 140:976–989

    PubMed  Google Scholar 

  129. Domański D, Klajnert B, Bryszewska M (2004) Influence of PAMAM dendrimers on human red blood cells. Bioelectrochemistry 63:189–191

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Jamilaldin Fatemi or Zeynab Abbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemi, S.M., Fatemi, S.J. & Abbasi, Z. PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies. Polym. Bull. 77, 6671–6691 (2020). https://doi.org/10.1007/s00289-019-03076-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03076-4

Keywords

Navigation