Skip to main content
Log in

Blanching applied in enzymatic inactivation and its influence on browning, bioactive compounds, and antioxidant activity of trapiá (Crataeva tapia L.) pulp

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The trapiá, although it is a species present in almost the entire Brazilian territory, has limited consumption due to the absence of commercial plantations and general unawareness of its properties, aggravated by the difficulty of processing due to rapid enzymatic browning that affects the pulp when handled. In this study, the influence of enzymatic inactivation through thermal blanching on the changes in luminosity, bioactive compounds, and antioxidant activity of trapiá pulp was evaluated. Blanching showed optimal effects when the thermal process was applied for a duration of 15 min, as confirmed by the qualitative determination of peroxidase (POD), indicating the interruption of enzymatic activity. The study of instrumental luminosity kinetics (color parameter) of the sample without thermal blanching treatment (control) and with blanching indicated a degradation process over time governed by a first-order model. The thermal process influenced the levels of bioactive compounds, resulting in increased flavonoids, anthocyanins, and β-carotene. Blanching also led to an increase in antioxidant activity measured by ABTS and DPPH methods, with a significant increase in DPPH radical scavenging activity, reaching 96% higher than the unblanched pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. FGC Pareyn, JL Vieira, MAGariglio. Estatística Florestal da Caatinga. 2. ed. Brasília: Ministério do Meio Ambiente, Associação Plantas do Nordeste, (2015).

  2. M Lacerda, H Lorenzi (2006). Frutas Brasileiras e Exóticas Cultivadas (De Consumo In Natura). Nova Odessa: Plantarum.

  3. R.L. Soares Neto, F.Á.L. Magalhães, F.R.S. Tabosa, M.F. Moro, M.B.C. Silva, M.I.B. Loiola, Flora do Ceará, Brasil: Capparaceae. Rodriguésia 65(3), 671684 (2014)

    Google Scholar 

  4. X Cornejo, JR Maciel, JS Marques, RLS Neto, MB Costaesilva. Capparaceae. Lista de Espécies da Flora do Brasil (2015).

  5. M. Hadidi, A. Ibarz, J. Conde, J. Pagan, Optimisation of steam blanching on enzymatic activity, color and protein degradation of alfalfa (Medicago sativa) to improve some quality characteristics of its edible protein. Food Chem. 276, 591–598 (2019). https://doi.org/10.1016/j.foodchem.2018.10.049

    Article  CAS  PubMed  Google Scholar 

  6. A.A. Escobar-Puentes, S.Y. Reyes-López, Á.D.J.R. Baltazar, V. López-Teros, A. Wall-Medrano, Molecular interaction of β-carotene with sweet potato starch: a bleaching-restitution assay. Food Hydrocoll. 127, 107522 (2022). https://doi.org/10.1016/j.foodhyd.2022.107522

    Article  CAS  Google Scholar 

  7. H.W. Xiao, Z. Pan, L.Z. Deng, H.M. El-Mashad, X.H. Yang, A.S. Mujumdar, Q. Zhang, Recent developments and trends in thermal blanching–A comprehensive review. Inf. Process. Agric. 4, 101–127 (2017). https://doi.org/10.1016/j.inpa.2017.02.001

    Article  Google Scholar 

  8. L.Z. Deng, A.S. Mujumdar, Q. Zhang, X.H. Yang, J. Wang, Z.A. Zheng, H.W. Xiao, Chemical and physical pretreatments of fruits and vegetables: effects on drying characteristics and quality attributes–a comprehensive review. Critical Rev. Food Sci. Nutr. 59, 1408–1432 (2019). https://doi.org/10.1080/10408398.2017.1409192

    Article  CAS  Google Scholar 

  9. O.Y. Barrón-García, M. Gaytán-Martínez, A.K. Ramírez-Jiménez, I. Luzardo-Ocampo, G. Velazquez, E. Morales-Sánchez, Physicochemical characterization and polyphenol oxidase inactivation of Ataulfo mango pulp pasteurized by conventional and ohmic heating processes. Lwt 143, 111113 (2021). https://doi.org/10.1016/j.lwt.2021.111113

    Article  CAS  Google Scholar 

  10. O.Y. Barrón-García, E. Morales-Sánchez, M. Gaytán-Martínez, Inactivation kinetics of Agaricus bisporus tyrosinase treated by ohmic heating: Influence of moderate electric field. Innov. Food Sci. Emerg. Technol. 56, 102179 (2019). https://doi.org/10.1016/j.ifset.2019.102179

    Article  CAS  Google Scholar 

  11. M.A. Sheikh, C.S. Saini, H.K. Sharma, Synergistic effect of microwave heating and hydrothermal treatment on cyanogenic glycosides and bioactive compounds of plum (Prunus domestica L.) kernels: an analytical approach. Curr. Res. Food Sci. 5, 65–72 (2022). https://doi.org/10.1016/j.crfs.2021.12.007

    Article  CAS  PubMed  Google Scholar 

  12. Z.L. Deng, Z. Pan, A.S. Mujumdar, J.H. Zhao, Z.A. Zheng, Z.J. Gao, H.W. Xiao, High-humidity hot air impingement blanching (HHAIB) enhances drying quality of apricots by inactivating the enzymes, reducing drying time and altering cellular structure. Food Control 96, 104–111 (2019). https://doi.org/10.1016/j.foodcont.2018.09.008

    Article  CAS  Google Scholar 

  13. A. Isidoro, V. Battestin, Determinação qualitativa de enzimas deteriorativas catalase e peroxidase em alcachofras provenientes da cidade de São Roque. SP. Revista Scientia Vitae 2, 55–60 (2014)

    Google Scholar 

  14. L.S. Chang, R. Karim, S.M. Abdulkarim, Y.A. Yusof, H.M. Ghazali, Storage stability, color kinetics and morphology of spray-dried soursop (Annona muricata L.) powder: effect of anticaking agents. Int. J. Food Prop. 21, 1937–1954 (2018). https://doi.org/10.1080/10942912.2018.1510836

    Article  CAS  Google Scholar 

  15. T.P. Labuza, Shelf-life dating of foods (Food & Nutrition Press Inc., Trumbull, 1982)

    Google Scholar 

  16. HMC Azeredo, JAF Faria, ES Brito. Fundamentos de cinética de degradação e estimativa de vida de prateleira In: HMC Azeredo. Fundamentos de estabilidade de alimentos. Fortaleza: Editora Técnica. (2004).

  17. A. Waterhouse, Folin-ciocalteau micro method for total phenol in wine. Am. J. Enol. Vitic. 48, 357–363 (2006)

    Google Scholar 

  18. AOAC, B. A. M. Association of official analytical chemists. Official methods of analysis, 12 (1990).

  19. MDT Benassi, AJ Antunes. A comparison of metaphosphoric and oxalic acids as extractants solutions for the determination of vitamin C in selected vegetables. Arq. Biol. Tecnol. 507–13 (1988).

  20. F.J. Francis, Analysis of anthocyanins. Anthocyanins Food Colors 1, 280 (1982)

    Google Scholar 

  21. K.C. Santos, J.S. Guedes, M.L. Rojas, G.R. Carvalho, P.E.D. Augusto, Enhancing carrot convective drying by combining ethanol and ultrasound as pre-treatments: effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrason. Sonochem. 70, 105304 (2021). https://doi.org/10.1016/j.ultsonch.2020.105304

    Article  CAS  PubMed  Google Scholar 

  22. M.S. Lima, I.D.S.V. Silani, I.M. Toaldo, L.C. Corrêa, A.C.T. Biasoto, G.E. Pereira, J.L. Ninow, Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil. Food Chem. 161, 94–103 (2014). https://doi.org/10.1016/j.foodchem.2014.03.109

    Article  CAS  PubMed  Google Scholar 

  23. H.C. Deeth, Heat-induced inactivation of enzymes in milk and dairy products. A review. Int. Dairy J. 121, 105104 (2021). https://doi.org/10.1016/j.idairyj.2021.105104

    Article  CAS  Google Scholar 

  24. M.L.S.O. Lima, P.S. Alceu, C.D.C.S. Gonçalves, Investigação qualitativa da biodegradação de corantes têxteis do tipo azo utilizando células de batata doce (Ipomoea batatas) como fonte de biocatalisador. Revista Sítio Novo 4, 30–39 (2020). https://doi.org/10.47236/2594-7036.2020.v4.i2.30-39p

    Article  Google Scholar 

  25. B.E. Halpin, C.Y. Lee, Effect of blanching on enzyme activity and quality changes in green peas. J. Food Sci. 52, 1002–1005 (1987)

    Article  Google Scholar 

  26. P. Singhal, S. Satya, S.N. Naik, Blanching: a sustainable and effective treatment for extending shelf life of bamboo shoots. Food Chem. Adv. 2, 100179 (2023). https://doi.org/10.1016/j.focha.2022.100179

    Article  Google Scholar 

  27. H.W. Xiao, X.D. Yao, H. Lin, W.X. Yang, J.S. Meng, Z.J. Gao, Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices. J. Food Process Eng 35, 370–390 (2012). https://doi.org/10.1111/j.1745-4530.2010.00594.x

    Article  Google Scholar 

  28. J. Zhu, X. Xia, F. Zhang, S. Song, H. Cui, K. Hayat, C.T. Ho, Taste characteristic and the mechanism of light-colored Maillard reaction products derived from gluten hydrolysate. Food Biosci. 52, 102394 (2023). https://doi.org/10.1016/j.fbio.2023.102394

    Article  CAS  Google Scholar 

  29. T. Henle, Protein-bound advanced glycation endproducts (AGEs) as bioactive amino acid derivatives in foods. Amino Acids 29, 313–322 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. J.M. Silván, J. Lagemaat, A. Olano, M.D.D. Castillo, Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. J. Pharm. Biomed. Anal. 41, 1543–1551 (2006). https://doi.org/10.1016/j.jpba.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  31. Z. Zhang, B. Wang, B. Adhikari, Maillard reaction between pea protein isolate and maltodextrin via wet-heating route for emulsion stabilisation. Future Foods 6, 100193 (2022). https://doi.org/10.1016/j.fufo.2022.100193

    Article  CAS  Google Scholar 

  32. H. Zhao, Endogenous antioxidants and antioxidant activities of beers, in Processing and impact on antioxidants in beverages. (Academic Press, Cambridge, 2014), pp.15–24. https://doi.org/10.1016/B978-0-12-404738-9.00002-7

    Chapter  Google Scholar 

  33. A. Garvín, R. Ibarz, A. Ibarz, Photodegradation Foods (2021). https://doi.org/10.1016/B978-0-08-100596-5.22950-8

    Article  Google Scholar 

  34. B. Ling, J. Tang, F. Kong, E.J. Mitcham, S. Wang, Kinetics of food quality changes during thermal processing: a review. Food Bioprocess Technol. 8, 343–358 (2015). https://doi.org/10.1007/s11947-014-1398-3

    Article  CAS  Google Scholar 

  35. G. Akar, I.B. Mazı, Color change, ascorbic acid degradation kinetics, and rehydration behavior of kiwifruit as affected by different drying methods. J. Food Process Eng 42, e13011 (2019). https://doi.org/10.1111/jfpe.13011

    Article  CAS  Google Scholar 

  36. E.E. Badin, Y.E. Rossi, M.A. Montenegro, A. Ibarz, P.D. Ribotta, A.R. Lespinard, Thermal processing of raspberry pulp: Effect on the color and bioactive compounds. Food Bioprod. Process. 124, 469–477 (2020). https://doi.org/10.1016/j.fbp.2020.08.016

    Article  CAS  Google Scholar 

  37. F. Salehi, Color changes kinetics during deep fat frying of kohlrabi (Brassica oleracea var. gongylodes) slice. Int. J. Food Prop. 22, 511–519 (2019). https://doi.org/10.1080/10942912.2019.1593616

    Article  Google Scholar 

  38. B. Nayak, R.H. Liu, J. Tang, Effect of processing on phenolic antioxidants of fruits, vegetables, and grains—a review. Crit. Rev. Food Sci. Nutr. 55, 887–918 (2015). https://doi.org/10.1080/10408398.2011.654142

    Article  CAS  PubMed  Google Scholar 

  39. E. Mecha, S.T. Leitão, B. Carbas, A.T. Serra, P.M. Moreira, M.M. Veloso, M.R. Bronze, Characterization of soaking process’ impact in common beans phenolic composition: contribute from the unexplored Portuguese germplasm. Foods 8, 296 (2019). https://doi.org/10.3390/foods8080296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. R.F. Dibanda, E.P. Akdowa, Q.M. Tongwa, Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings. Food Chem. 302, 125308 (2020). https://doi.org/10.1016/j.foodchem.2019.125308

    Article  CAS  Google Scholar 

  41. J. Mandha, H. Shumoy, A.O. Matemu, K. Raes, Characterization of fruit juices and effect of pasteurization and storage conditions on their microbial, physicochemical, and nutritional quality. Food Biosci. 51, 102335 (2023). https://doi.org/10.1016/j.fbio.2022.102335

    Article  CAS  Google Scholar 

  42. J.D.P. Matos, R.M.F. Figueirêdo, A.J.M. Queiroz, L.P.F.R. Silva, M.S. Moraes, S.N. Silva, Z.R.T. Costa, L.M.S. Rodrigues, A.F. Vieira, D.D.F. Leite, P.B. Silva, J.A.D. Esmero, F.S. Santos, M.G. Gonçalves, Physical-chemical and bioactive characterization of jambolan and acerola mixed pulp. Sylwan 165(1), 45–61 (2021)

    Google Scholar 

  43. J. Sung, J.H. Suh, Y. Wang, Effects of heat treatment of mandarin peel on flavonoid profiles and lipid accumulation in 3T3-L1 adipocytes. J. Food Drug Anal. 27, 729–735 (2019). https://doi.org/10.1016/j.jfda.2019.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Oancea, A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 10, 1337 (2021). https://doi.org/10.3390/antiox10091337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S. Xie, Y. Liu, H. Chen, Z. Zhang, M. Ge, Anthocyanin degradation and the underlying molecular mechanism in a red-fleshed grape variety. Lwt 151, 112198 (2021). https://doi.org/10.1016/j.lwt.2021.112198

    Article  CAS  Google Scholar 

  46. S. Deepika, P.P. Sutar, Combining osmotic–steam blanching with infrared–microwave–hot air drying: production of dried lemon (Citrus limon L.) slices and enzyme inactivation. Drying Technol. 36, 1719–1737 (2018). https://doi.org/10.1080/07373937.2017.1422744

    Article  CAS  Google Scholar 

  47. L. Yuan, F. Cheng, J. Yi, S. Cai, X. Liao, F. Lao, L. Zhou, Effect of high-pressure processing and thermal treatments on color and in vitro bioaccessibility of anthocyanin and antioxidants in cloudy pomegranate juice. Food Chem. 373, 131397 (2022). https://doi.org/10.1016/j.foodchem.2021.131397

    Article  CAS  PubMed  Google Scholar 

  48. D. Yıldız, D.B. Gürel, Ö. Çağındı, S. Kayaardı, Heat treatment and microwave applications on homemade sour cherry juice: the effect on anthocyanin content and some physicochemical properties. Curr. Plant Biol. 29, 100242 (2022). https://doi.org/10.1016/j.cpb.2022.100242

    Article  CAS  Google Scholar 

  49. B. Hiranvarachat, S. Devahastin, N. Chiewchan, G.V. Raghavan, Structural modification by different pretreatment methods to enhance microwave-assisted extraction of β-carotene from carrots. J. Food Eng. 115, 190–197 (2013). https://doi.org/10.1016/j.jfoodeng.2012.10.012

    Article  CAS  Google Scholar 

  50. O.J. Jesús, L.A. Cira-Chávez, A.A. Gardea-Béjar, J.C. Guevara-Arauza, D.R. Sepúlveda, J. Reyes-Hernández, S. Ruiz-Cruz, Effect of heat treatment on the content of some bioactive compounds and free radical-scavenging activity in pungent and non-pungent peppers. Food Res. Int. 50, 519–525 (2013). https://doi.org/10.1016/j.foodres.2011.01.006

    Article  CAS  Google Scholar 

  51. P. Schober, C. Boer, L.A. Schwarte, Correlation coefficients: appropriate use and interpretation. Anesth. Analg. 126, 1763–1768 (2018). https://doi.org/10.1213/ANE.0000000000002864

    Article  PubMed  Google Scholar 

  52. R. Indiarto, R. Reni, G.L. Utama, E. Subroto, A.D. Pangawikan, M. Djali, The physicochemical, antioxidant, and sensory properties of chocolate biscuits incorporated with encapsulated mangosteen (Garcinia mangostana L.) peel extract. Int. J. Food Prop. 26, 122–138 (2023). https://doi.org/10.1080/10942912.2022.2159429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslávia Ferreira Paiva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, H.V., de Figueirêdo, R.M.F., Queiroz, A.J.d. et al. Blanching applied in enzymatic inactivation and its influence on browning, bioactive compounds, and antioxidant activity of trapiá (Crataeva tapia L.) pulp. Food Measure 18, 2894–2902 (2024). https://doi.org/10.1007/s11694-024-02367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02367-3

Keywords

Navigation