Skip to main content
Log in

A comparative study of physicochemical and antioxidant properties integrated with chemometrics on enzymatic hydrolysates of selected fruit seeds

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Fruit seed is one of the by-products of fruit processing that is currently underexploited. In this study, the crude water extracts of guava, longan, and rockmelon seeds were hydrolyzed using enzymes bromelain and alcalase. Their yields (2.47–57.02%), TPC (15.53–127.99 mg GAE/g), TFC (18.03–115.15 mg QE/g), protein (14.04–178.60 mg/g), and peptide (23.55–203.97 mg/g) contents were reported. Among the guava seed samples, bromelain hydrolysate (G2) had the highest FRAP (121.489 mg Fe(II)/g), ABTS (IC50 1.713 mg/mL) and DPPH (IC50 0.158 mg/mL) values. Similarly, bromelain hydrolysate of rockmelon seed (R2) exhibited higher FRAP (41.511 mg Fe(II)/g) and ABTS (IC50 2.605 mg/mL) values than the crude extract. However, longan seed crude extract (L1) exhibited higher antioxidant activity than its hydrolysates. Furthermore, chemometric analysis revealed multifaceted relationship among physicochemical and antioxidant parameters, in which L1, bromelain (L2) and alcalase hydrolysates (L3) of longan seed, guava seed crude extract (G1), and G2 associated positively with TPC, TFC, and reducing antioxidant power. Overall, longan and guava seed extracts (L1, G1) and hydrolysates (L2, L3, G2) can be potentially used as antioxidant ingredients for food product development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. D. Dey, J.K. Richter, P. Ek, B.J. Gu, G.M. Ganjyal, Utilization of food processing by-products in extrusion processing: a review. Front. Sustain. Food Syst. 4, 603751–603768 (2021). https://doi.org/10.3389/fsufs.2020.603751

    Article  Google Scholar 

  2. R. Krishnan, R. Agarwal, C. Bajada, K. Arshinder, Redesigning a food supply chain for environmental sustainability—an analysis of resource use and recovery. J. Clean. Prod. 242, 118374–118389 (2020). https://doi.org/10.1016/j.jclepro.2019.118374

    Article  Google Scholar 

  3. A.A. Hashim, A.A. Kadir, M.H. Ibrahim, S. Halim, N.A. Sarani, M.I.H. Hassan, N.J.A. Hamid, N.H. Hashar, N.F.N. Hissham, Overview on food waste management and composting practice in Malaysia. AIP Conf. Proc. 2339, 020181 (2021). https://doi.org/10.1063/5.0044206

    Article  Google Scholar 

  4. S. Allaqaband, A.H. Dar, U. Patel, N. Kumar, G.A. Nayik, S.A. Khan, M.J. Ansari, N.M. Alabdallah, P. Kumar, V.K. Pandey, B. Kovács, A.M. Shaikh, Utilization of fruit seed-based bioactive compounds for formulating the nutraceuticals and functional food: a review. Front. Nutr. 9, 1020 (2022). https://doi.org/10.3389/fnut.2022.902554

    Article  CAS  Google Scholar 

  5. W. Liu, A. Dostdar-Rozbahani, F. Tadayon-Zadeh, M. Akbarpour-Beni, M. Pourkiani, F. Sadat-Razavi, V. Barfi, V. Shahedi, Insufficient level of physical activity and its effect on health costs in low-and middle-income countries. Front. Public Health 10, 937196 (2022). https://doi.org/10.3389/fpubh.2022.937196

    Article  PubMed  PubMed Central  Google Scholar 

  6. V. Radenkovs, K. Juhnevica-Radenkova, P. Górnaś, D. Seglina, Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products. Trends Food Sci. Technol. 77, 64–76 (2018). https://doi.org/10.1016/j.tifs.2018.05.013

    Article  CAS  Google Scholar 

  7. T.T. Chai, Y.C. Law, F.C. Wong, S.K. Kim, Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: a review. Mar. Drugs 15, 42–67 (2017). https://doi.org/10.3390/md15020042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. B. Singh, J.P. Singh, A. Kaur, N. Singh, Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res. Int. 101, 1–16 (2017). https://doi.org/10.1016/j.foodres.2017.09.026

    Article  CAS  PubMed  Google Scholar 

  9. L. Liu, W. Wen, R. Zhang, Z. Wei, Y. Deng, J. Xiao, M. Zhang, Complex enzyme hydrolysis releases antioxidative phenolics from rice bran. Food Chem. 214, 1–8 (2017). https://doi.org/10.1016/j.foodchem.2016.07.038

    Article  CAS  PubMed  Google Scholar 

  10. Z. Gulsunoglu, F. Karbancioglu-Guler, K. Raes, M. Kilic-Akyilmaz, Soluble and insoluble-bound phenolics and antioxidant activity of various industrial plant wastes. Int. J. Food Prop. 22, 1501–1510 (2019). https://doi.org/10.1080/10942912.2019.1656233

    Article  CAS  Google Scholar 

  11. B.A. Acosta-Estrada, J.A. Gutiérrez-Uribe, S.O. Serna-Saldívar, Bound phenolics in foods, a review. Food Chem. 152, 46–55 (2014). https://doi.org/10.1016/j.foodchem.2013.11.093

    Article  CAS  PubMed  Google Scholar 

  12. S.S. Nadar, P. Rao, V.K. Rathod, Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: a review. Food Res. Int. 108, 309–330 (2018). https://doi.org/10.1016/j.foodres.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  13. M. Puri, D. Sharma, C.J. Barrow, Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 30, 37–44 (2012). https://doi.org/10.1016/j.tibtech.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  14. K.Y. Ee, L.Y. Khoo, W.J. Ng, F.C. Wong, T.T. Chai, Effects of bromelain and trypsin hydrolysis on the phytochemical content, antioxidant activity, and antibacterial activity of roasted butterfly pea seeds. Processes 7, 534–546 (2019). https://doi.org/10.3390/pr7080534

    Article  CAS  Google Scholar 

  15. R.V. Nouroozi, M.V. Noroozi, M. Ahmadizadeh, Determination of protein concentration using Bradford microplate protein quantification assay. Int. Electron. J. Med. 4, 11–17 (2015). https://doi.org/10.31661/IEJM158

    Article  Google Scholar 

  16. Y.F. Liu, I. Oey, P. Bremer, P. Silcock, A. Carne, Proteolytic pattern, protein breakdown and peptide production of ovomucin-depleted egg white processed with heat or pulsed electric fields at different pH. Food Res. Int. 108, 465–474 (2018). https://doi.org/10.1016/j.foodres.2018.03.075

    Article  CAS  PubMed  Google Scholar 

  17. N.M.P. Araujo, G.A. Pereira, H.S. Arruda, L.G. Prado, A.L.T.G. Ruiz, M.N. Eberlin, R.J.S. de Castro, G.M. Pastore, Enzymatic treatment improves the antioxidant and antiproliferative activities of Adenanthera pavonina L. seeds. Biocatal. Agric. Biotechnol. 18, 101002 (2019). https://doi.org/10.1016/j.bcab.2019.01.040

    Article  Google Scholar 

  18. F. Shahidi, J. Yeo, Insoluble-bound phenolics in food. Molecules 21, 1216 (2016). https://doi.org/10.3390/molecules21091216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M.C. Vaz Patto, R. Amarowicz, A.N. Aryee, J.I. Boye, H.J. Chung, M.A. Martin-Cabrejas, C. Domoney, Achievements and challenges in improving the nutritional quality of food legumes. Crit. Rev. Plant Sci. 34, 105–143 (2015). https://doi.org/10.1080/07352689.2014.897907

    Article  CAS  Google Scholar 

  20. W. Mikucka, M. Zielinska, K. Bulkowska, I. Witonska, Subcritical water extraction of bioactive phenolic compounds from distillery stillage. J. Environ. Manage. 318, 115548 (2022). https://doi.org/10.1016/j.jenvman.2022.115548

    Article  CAS  PubMed  Google Scholar 

  21. L. Rostammiry, M.R. Saeidiasl, R. Safari, R. Javadian, Optimization of the enzymatic hydrolysis of soy protein isolate by alcalase and trypsin. Biosci. Biotechnol. Res. Asia 14, 193–200 (2017). https://doi.org/10.13005/bbra/2435

    Article  Google Scholar 

  22. A.M. Alashi, C.L. Blanchard, R.J. Mailer, S.O. Agboola, A.J. Mawson, R. He, A. Girgih, R.E. Aluko, Antioxidant properties of Australian canola meal protein hydrolysates. Food Chem. 146, 500–506 (2014). https://doi.org/10.1016/j.foodchem.2013.09.081

    Article  CAS  PubMed  Google Scholar 

  23. A.A. Famuwagun, A.M. Alashi, S.O. Gbadamosi, K.A. Taiwo, D. Oyedele, O.C. Adebooye, R.E. Aluko, Effect of protease type and peptide size on the in vitro antioxidant, antihypertensive and anti-diabetic activities of eggplant leaf protein hydrolysates. Foods 10, 1112 (2021). https://doi.org/10.3390/foods10051112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. X. Xu, Y. Qiao, B. Shi, V.P. Dia, Alcalase and bromelain hydrolysis affected physicochemical and functional properties and biological activities of legume proteins. Food Struct. 27, 100178 (2021). https://doi.org/10.1016/j.foostr.2021.100178

    Article  CAS  Google Scholar 

  25. X. Feng, S. Hang, Y. Zhou, Q. Liu, H. Yang, Bromelain kinetics and mechanism on myofibril from golden pomfret (Trachinotus blochii). J. Food Sci. 83, 2148–2158 (2018). https://doi.org/10.1111/1750-3841.14212

    Article  CAS  PubMed  Google Scholar 

  26. J. Yu, N. Mikiashvili, Effectiveness of different proteases in reducing allergen content and IgE-binding of raw peanuts. Food Chem. 307, 125565 (2020). https://doi.org/10.1016/j.foodchem.2019.125565

    Article  CAS  PubMed  Google Scholar 

  27. Y. Wang, Z. Wang, S. Cheng, F. Han, Aqueous enzymatic extraction of oil and protein hydrolysates from peanut. Food Sci. Technol. Res. 14, 533–533 (2008). https://doi.org/10.3136/fstr.14.533

    Article  CAS  Google Scholar 

  28. P. Pocan, E. Bahcegul, M.H. Oztop, H. Hamamci, Enzymatic hydrolysis of fruit peels and other lignocellulosic biomass as a source of sugar. Waste Biomass Valoriz. 9, 929–937 (2018). https://doi.org/10.1007/s12649-017-9875-3

    Article  CAS  Google Scholar 

  29. F.C. Wong, J. Xiao, S. Wang, K.Y. Ee, T.T. Chai, Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol. 99, 44–57 (2020). https://doi.org/10.1016/j.tifs.2020.02.012

    Article  CAS  Google Scholar 

  30. X. Li, Y. Zheng, Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects. Biotechnol. Adv. 35, 466–489 (2017). https://doi.org/10.1016/j.biotechadv.2017.03.010

    Article  CAS  PubMed  Google Scholar 

  31. X. Li, M. Li, Y. Pu, A.J. Ragauskas, A.S. Klett, M. Thies, Y. Zheng, Inhibitory effects of lignin on enzymatic hydrolysis: the role of lignin chemistry and molecular weight. Renew. Energy 123, 664–674 (2018). https://doi.org/10.1016/j.renene.2018.02.079

    Article  CAS  Google Scholar 

  32. M. Olszowy, What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 144, 135–143 (2019). https://doi.org/10.1016/j.plaphy.2019.09.039

    Article  CAS  PubMed  Google Scholar 

  33. E.S.K. Ibrahim, M.A. Ghani, The effect of enzymatic hydrolysis on the antioxidant activities and amino acid profiles of defatted chia (Salvia hispanica L.) flour. Food Res. 4, 38–50 (2020)

    Article  Google Scholar 

  34. Z. MehdipourBiregani, H. Ahari, Effect of alcalase-mediated hydrolysis on the free radical scavenging activity and reducing power of whey protein isolate. J Food Bioprocess Eng 4, 58–62 (2021). https://doi.org/10.22059/JFABE.2021.317538.1081

    Article  Google Scholar 

  35. K. Sarabandi, Z. Akbarbaglu, R. Sarabandi, F. Tamjidi, P. Gharehbeglou, S.M. Jafari, Improving the functionality and biological properties of Iranian date palm (Phoenix dactylifera L.) seeds protein with different proteases. Food Human. 1, 675–683 (2023). https://doi.org/10.1016/j.foohum.2023.07.017

    Article  Google Scholar 

  36. A. Jakubczyk, M. Karaś, K. Rybczyńska-Tkaczyk, E. Zielińska, D. Zieliński, Current trends of bioactive peptides—new sources and therapeutic effect. Foods 9, 846 (2020). https://doi.org/10.3390/foods9070846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K.L. Ng, Y.N. Tan, M.A. Osman, N.F. Rajab, K.Y. Ee, Characterization, antioxidant, ACE inhibition and toxicity evaluations of palm kernel cake-derived Alcalase® hydrolysate. Food Sci. Technol. 42, e80421 (2021). https://doi.org/10.1590/fst.80421

    Article  Google Scholar 

  38. G. López-García, O. Dublan-García, D. Arizmendi-Cotero, L.M. Gómez Oliván, Antioxidant and antimicrobial peptides derived from food proteins. Molecules 27, 1343 (2022). https://doi.org/10.3390/molecules27041343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. C. Sun, X. Tang, Y. Ren, E. Wang, L. Shi, X. Wu, H. Wu, Novel antioxidant peptides purified from mulberry (Morus atropurpurea Roxb.) leaf protein hydrolysates with hemolysis inhibition ability and cellular antioxidant activity. J. Agric. Chem. 67, 7650–7659 (2019). https://doi.org/10.1021/acs.jafc.9b01115

    Article  CAS  Google Scholar 

  40. C.F. Ajibola, J.B. Fashakin, T.N. Fagbemi, R.E. Aluko, Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int. J. Mol. Sci. 12, 6685–6702 (2011). https://doi.org/10.3390/ijms12106685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Phongthai, S. D’Amico, R. Schoenlechner, W. Homthawornchoo, S. Rawdkuen, Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem. 240, 156–164 (2018). https://doi.org/10.1016/j.foodchem.2017.07.080

    Article  CAS  PubMed  Google Scholar 

  42. X. Lu, L. Zhang, Q. Sun, G. Song, J. Huang, Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res. Int. 116, 707–716 (2019). https://doi.org/10.1016/j.foodres.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  43. Z. Akbarbaglu, F. Tamjidi, K. Sarabandi, A. Ayaseh, Physicochemical characteristics and antioxidant stability of spray-dried soy peptide fractions. Food Sci. Nutr. 11, 3949–3958 (2023). https://doi.org/10.1002/fsn3.3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. C. Chen, R.A.M. Mokhtar, M.S.A. Sani, N.Q.I.M. Noor, The effect of maturity and extraction solvents on bioactive compounds and antioxidant activity of mulberry (Morus alba) fruits and leaves. Molecules 27, 2406 (2022). https://doi.org/10.3390/molecules27082406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Faculty of Science, Universiti Tunku Abdul Rahman for providing financial support and research facilities.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Peir Shinn Hew: Conceptualization, data curation, formal analysis, validation, visualization, writing—original draft, writing—review and editing; Zhian Joe Wong: Data curation, formal analysis, writing—original draft; Min Feung Wong: Data curation, formal analysis, writing—original draft; Wen Jie Ng: Conceptualization, data curation, formal analysis, validation, visualization, writing—original draft, writing—review and editing; Kah Yaw Ee: Conceptualization, data curation, formal analysis, validation, visualization, supervision, project administration, writing—original draft, writing—review and editing. All authors have read and agreed to publish the manuscript.

Corresponding author

Correspondence to Kah Yaw Ee.

Ethics declarations

Competing interests

The authors declare no conflict of interest, financial, or otherwise.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hew, P.S., Wong, Z.J., Wong, M.F. et al. A comparative study of physicochemical and antioxidant properties integrated with chemometrics on enzymatic hydrolysates of selected fruit seeds. Food Measure 18, 2846–2856 (2024). https://doi.org/10.1007/s11694-024-02362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02362-8

Keywords

Navigation