Skip to main content
Log in

Achachairú (Garcinia humilis): chemical characterization, antioxidant activity and mineral profile

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study characterized the nutritional value, including the total phenolic compounds, antioxidant potential, and mineral profile of peel, pulp, and seed of achachairú fruit. Fruits were collected and selected for appearance, ripeness stage, absence of physical damage, and then sanitized and pulped (when fruit peel, pulp, and seed were separated). These parts were lyophilized separately to guarantee the analytical results. The results indicated high moisture content in the fruit peel (79.63%), and pulp (80.68%). Potassium was the most abundant mineral found in fruit seed (224.56 mg/100 g), followed by peel (146.32 mg/100 g), and pulp (46.32 mg/100 g), while the least abundant element was copper (peel = 0.03 mg/100 g, pulp = 0.01 mg/100 g, and seed = 0.04 mg/100 g) with no significant difference between fractions. An influence of solvent used for determination of antioxidant activity of achachairú fruit was observed, in which ethanolic extract was regarded as the best solvent for this test in all evaluated methods. Evaluation of phenolic compounds showed variable results, where the highest contents (p < 0.05) were found in aqueous extract from the peel (149.71 mg EAG/100 g), and ethereal extract from the seed (212.28 mg EAG/100 g). The highest tannin content (p < 0.05) was found in seeds, both for condensates (63.83 mg de CAE/g) and hydrolysates (11.84 mg GA/g), and there was no significant difference between results from fruit peel and pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C. Caleja, L. Barros, A.L. Antonio, M.B.P.P. Oliveira, I.C.F.R. Ferreira, A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chem. 216, 342–346 (2017)

    Article  CAS  Google Scholar 

  2. J.F. Almeida, A.M. Reis, L.F.S. Heldt, D. Pereira, M. Bianchin, C. Moura, M.V. Plata-Oviedo, C.W.I. Haminiuk, I.S. Ribeiro, C.F.P. Luz, S.T. Carpes, Lyophilized bee pollen extract: a natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT—Food Sci. Technol. 76(Part B), 299–305 (2016)

    Google Scholar 

  3. R.M. Bodoira, M.C. Penci, P.D. Ribotta, M.L. Martínez, Chia (Salvia hispanica L.) oil stability: study of the effect of natural antioxidants. LWT—Food Sci. Technol. 75, 107–113 (2017)

    Article  CAS  Google Scholar 

  4. Y.M. Chong, S.K. Chang, W.C.M. Sia, H.S. Yim, Antioxidant efficacy of mangosteen (Garcinia mangostana Linn.) peel extracts in sunflower oil during accelerated storage. Food Biosci. 12, 18–25 (2015)

    Article  CAS  Google Scholar 

  5. I. Muíño, M.T. Díaz, E. Apeleo, C. Perez-Santaescolastica, A. Rivas-Cañedo, C. Perez, V. Cañeque, S. Lauzurica, J. La Fuente, Valorizations of an extract from olive oil waste as a natural antioxidant for reducing meat waste resulting from oxidative processes. J. Clean. Prod. 140(Part 2), 924–932 (2017)

    Article  Google Scholar 

  6. M.S.M. Rufino, R.E. Alves, E.S. Brito, J. Pérez-Jiménez, F. Saura-Calixto, J. Mancini-Filho, Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 121(4), 996–1002 (2010)

    Article  CAS  Google Scholar 

  7. M. Barbouchi, K. Elamrani, M.E. Idrissi, M. Choukrad, A comparative study on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L, J. King Saud Univ. (2018). https://doi.org/10.1016/j.jksus.2018.05.010

    Article  Google Scholar 

  8. S.A. Socaci, A.C. Farcas¸, Z.M. Diaconeasa, D.C. Vodnar, B. Rusu, M. Tofan, Influence of the extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers’ spent grain. J. Cereal Sci. 80, 180–187 (2018)

    Article  CAS  Google Scholar 

  9. I.I. Rockenbach, G.L. Silva, E. Rodrigues, E.M. Kuskoski, R. Fett, Solvent Influence on total polyphenol content, anthocyanins, and antioxidant activity of grape (Vitis vinifera) bagasse extracts from Tannat and Ancelota—different varieties of Vitis vinifera varieties. Food Sci. Technol. 28(Supl.), 238–244 (2018)

    Google Scholar 

  10. R.G.C. Barros, J.K.S. Andrade, M. Denadai, M.L. Nunes, N. Narain, Evaluation of bioactive compounds potential and antioxidant activity in some Brazilian exotic fruit residues. Food Res. Int. 102, 84–92 (2017)

    Article  CAS  Google Scholar 

  11. L.B. Virgolin, F.R.F. Seixas, N.S. Janzantti. Composition, content of bioactive compounds, and antioxidant activity of fruit pulps from the Brazilian Amazon biome. Pesq. Agropec. Bras. 52(10), 933–941 (2017)

    Article  Google Scholar 

  12. A. Berto, A.F. Silva, V.J. Visentainer, M. Matsushita, N.E. Souza, Proximate compositions, mineral contents and fatty acid compositions of native Amazonian fruits. Food Res. Int. 77(Part 3), 441–449 (2015)

    Article  CAS  Google Scholar 

  13. M. Barea-Álvarez, C. Delgado-Andrade, A. Haro, M. Manuel Olalla, I. Seiquer, J. Rufián-Henares, Subtropical fruits grown in Spain and elsewhere: a comparison of mineral profiles. J. Food Compos. Anal. 48, 34–40 (2016)

    Article  Google Scholar 

  14. E. Soprano, Estação experimental de Itajaí testa fruta exótica. Available at http://www.epagri.sc.gov.br/ (2010)

  15. B.D. Ardaya, Cultivo de achachairu Garcinia humilis: manual de recomendaciones, 1st edn. (Centro de Investigacíon Agricola, Bolívia, 2009), pp. 1–103

    Google Scholar 

  16. G. Deng, C. Shen, X. Xu, R. Kuang, Y. Guo, L. Zeng, L. Gao, X. Lin, J. Xie, E. Xia, S. Li, S. Wu, F. Chen, W. Ling, H. Li, Potential of fruit wastes as natural resources of bioactive compounds. Int J Mol Sci. 13(7), 8308–8323 (2012)

    Article  CAS  Google Scholar 

  17. AOAC, Official Methods of Analysis, (Association of Official Analytical Chemists, Gaithersburg, 2012)

    Google Scholar 

  18. E.G. Bligh, J. Dyer, A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37(8), 911–917 (1959)

    Article  CAS  Google Scholar 

  19. A.L. Merrill, B.K. Watt, Energy Value of Foods: Basis and Derivation, 1st edn. (Departamento de Agricultura dos Estados Unidos, Washington, 1973), pp. 8–48

    Google Scholar 

  20. EMBRAPA, Manual de Métodos de Análise de Solos, 1st edn. (EMBRAPA, Rio de Janeiro, 1997), pp. 81–181

    Google Scholar 

  21. E. Malavolta, G.C. Viltti, S.A. Oliveira, Avaliação do Estado Nutricional Das Plantas: Princípios e Aplicações, 1st edn. (Potafos, Piracicaba, 1997), pp. 231–305

    Google Scholar 

  22. A. Mir-Marqués, A. Domingo, M.L. Cervera, M. Guardia, Mineral profile of kaki fruits (Diospyros kaki L.). Food Chem. 172, 291–297 (2015)

    Article  Google Scholar 

  23. R.J. Marles, Mineral nutrient composition of vegetables, fruits and grains: the context of reports of apparent historical declines. J. Food Compos. Anal. 56, 93–103 (2017)

    Article  CAS  Google Scholar 

  24. W. Brand-Willians, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 28(1), 25–30 (1995)

    Google Scholar 

  25. R.G. Borguini, E.A.F.S. Torres, Tomatoes and tomato products as dietary sources of antioxidants. Food Rev. Int. 25(4), 313–325 (2009)

    Article  CAS  Google Scholar 

  26. I.F.F. Benzie, J.J. Strain, Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 239(1), 70–76 (1996)

    Article  CAS  Google Scholar 

  27. R. Re, N. Pelegrini, A. Proteggente, A. Pannala, M. Yang, C. Riceevans, Antioxidant activity applying an improved ABTS●+ radical cation decolorization assay. Free Radic. Biol. Med. 26(9–10), 1231–1237 (1999)

    Article  CAS  Google Scholar 

  28. A.L. Waterhouse, Polyphenolics: determination of total phenolics, in Current Protocols in Food Analytical Chemistry, ed. by R.E. Wrolstad (Wiley, New York, 2002), pp. 111–118

    Google Scholar 

  29. M.L. Price, A.V. Scoyoc, L.G. Butler, A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 26(5), 1214–1218 (1978)

    Article  CAS  Google Scholar 

  30. M.T. Barcia, P.B. Pertuzatti, A.C. Jacques, H.T. Godoy, R. Zambiazi, Bioactive compounds, antioxidant activity and percent composition of jambolão fruits (Syzygium cumini). Nat. Prod. J. 2(2), 129–138 (2012)

    CAS  Google Scholar 

  31. M. Brune, L. Hallberg, A. Skanberg, Determination of iron-binding phenolic groups in foods. J. Food Sci. 56(1), 128–131 (1991)

    Article  CAS  Google Scholar 

  32. P. Pacheco, J.G. Paz, C.O. Silva, G.B. Pascola, Composição centesimal, compostos bioativos e parâmetros físico-químicos do jenipapo (Genipa americana L.) in natura. Demetra 9(4), 1041–1054 (2014)

    Article  Google Scholar 

  33. P. Galaz, M. Valdenegro, C. Ramírez, H. Nunez, S. Almonacid, R. Simpson, Effect of drum drying temperature on drying kinetic and polyphenol contents in pomegranate peel. J. Food Eng. 208, 19–27 (2017)

    Article  CAS  Google Scholar 

  34. L.E. Garcia-Amezquita, V. Tejada-Ortigoza, E. Heredia-Olea, S.O. Serna-Saldívar, J. Welti-Chanes, Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. J. Food Compos. Anal. 67, 77–85 (2018)

    Article  CAS  Google Scholar 

  35. E. Joaquín-Cruz, M. Dueñas, L. García-Cruz, Y. Salinas-Moreno, C. Santos-Buelga, C. García-Salinas, Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: a tropical source of natural pigments. Food Res. Int. 70, 151–157 (2015)

    Article  Google Scholar 

  36. A.M. Batista, E.M. Silva, E.I.G. Silva, Consumo alimentar de magnésio, potássio e fósforo por adolescentes de uma escola pública. Saúde Pesq. 9(1), 73–82 (2016)

    Article  Google Scholar 

  37. F. Cao, C. Guan, H. Dai, X. Li, Z. Zhang, Soluble solids content is positively correlated with phosphorus content in ripening strawberry fruits. Sci. Hortic. 195, 183–187 (2015)

    Article  CAS  Google Scholar 

  38. C.S. Shin, K.M. Kim, Cálcio, é melhor ter menos? Perspectivas Globais de Saúde. J. Cell Biochem. 116, 1513–1521 (2015)

    Article  CAS  Google Scholar 

  39. J.H. Cunningham, G. Milligan, L. Trevisan, Minerals in Australian Fruits and Vegetables a Comparison of Levels Between the 1980 and 2000. Food Standards Australia New Zealand, Australia New Zealand (2002). http://www.foodstandards.gov.au/publications/documents/minerals_report.pd

  40. M.I.F. Chitarra, A.B. Chitarra, Pós-Colheita de Frutos e Hortaliças: Fisiologia e Manuseio, 2. ed. rev. e ampl (UFLA, Lavras, 2005)

    Google Scholar 

  41. J.T. Milanez, L.C. Neves, R.C. Colombo, M. Shahab, S.R. Roberto, Bioactive compounds and antioxidant activity of buriti fruits, during the postharvest, harvested at different ripening stages. Sci. Hortic. 227, 10–21 (2018)

    Article  CAS  Google Scholar 

  42. J.S. Lira Junior, R.S. Musser, E.A. Melo, M.I.S. Maciel, I.E. Lederman, V.E. Santos, Caracterização física e físico-química de frutos de cajá-umbu (Spondias spp.). Ciênc. Tecnol. Aliment. 25(4), 757–761 (2005)

    Article  Google Scholar 

  43. S.C. Jesus, M.I.S. Folegatti, F.C.A.U. Matsuura, R.L. Cardoso, Caracterização física e química de frutos de diferentes genótipos de bananeira. Bragantina 63(3), 315–323 (2004)

    Article  Google Scholar 

  44. M. Carocho, I.C. Ferreira, A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 51, 15–25 (2013)

    Article  CAS  Google Scholar 

  45. V.M. Jiménez, E. Mora-Newcomer, M.V. Gutiérrez-Soto, Biology of the papaya plant, in Genetics and Genomics of Papaya, Plant Genetics and Genomics: Crops and Models, ed. by R. Ming, P.H. Moore (Springer, New York, 2014), pp. 17–33

    Chapter  Google Scholar 

  46. L. Carrillo-Hormaza, A.M. Ramírez, C. Quintero-Ortiz, M. Cossio, S. Medina, F. Ferreres, A. Gil-Izquierdo, E. Osorio, Comprehensive characterization and antioxidante activities of the main biflavonoids of Garcinia madruno: A novel tropical species for developing functional products. J. Funct. Foods 27, 503–516 (2016)

    Article  CAS  Google Scholar 

  47. K.D.R.R. Silva, M.S.F. Sirasa, Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chem. 238, 203–208 (2018)

    Article  CAS  Google Scholar 

  48. M.B. Muniz, J.M. Queiroz, R.M.F. Figueirêdo, M.E.M. Duarte, Caracterização termofísica de polpas de bacuri. Ciênc. Tecnol. Aliment. 26(2), 360–368 (2006)

    Article  Google Scholar 

  49. E.A. Melo, M.I.S. Maciel, V.A.G.L. Lima, R.J. Nascimento, Capacidade antioxidante de frutas. Rev. Bras. Ciênc. Farm. 44(2), 193–201 (2008)

    Article  CAS  Google Scholar 

  50. S. Zang, S. Tian, J. Jiang, D. Han, X. Yu, K. Wang, D. Li, D. Lu, A. Yu, Z. Zhang, Determination of antioxidant capacity of diverse fruits by electron spin resonance (ESR) and UV–Vis spectrometries. Food Chem. 221, 1221–1225 (2017)

    Article  CAS  Google Scholar 

  51. E.M. Kuskoski, A.G. Asuero, A.M. Troncoso, J. Mancini-Filho, R. Fett, Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Sci. Technol. 25(4), 726–732 (2005)

    Article  CAS  Google Scholar 

  52. A. Moure, J.M. Cruz, D. Franco, J.M. Domínguez, J. Sineiro, H. Domínguez, M.J. Nunez, J.C. Parajo, Natural antioxidants from residual sources. Food Chem. 72(2), 145–171 (2001)

    Article  CAS  Google Scholar 

  53. C.H. Degáspari, N. Waszczynskyj, M.R. Prado, Atividade antimicrobiana de Schinus terebinthifolius Raddi. Ciênc. Agrotéc. 29(3), 617–622 (2005)

    Article  Google Scholar 

  54. M.A. Tessmer, R.A. Kluge, B.A. Glória, The accumulation of tannins during the development of ‘Giombo’ and ‘Fuyu’ persimmon fruits. Sci. Hortic. 172, 292–299 (2014)

    Article  CAS  Google Scholar 

  55. C.M.J. Benevides, M.V. Souza, R.D.B. Souza, M.V. Lopes, Antinutritional factors in foods: a review. Segur. Aliment. Nutr. 18, 67–79 (2011)

    Article  Google Scholar 

  56. M.R.P. Monteiro, M.A. Moreira, N.M.B. Costa, M.G.A. Oliveira, C.V. Pires, Avaliação da digestibilidade protéica de genótipos de soja com ausência e presença do inibidor de tripsina Kunitz e lipoxigenases. Braz. J. Food Technol. 6, 99–107 (2003)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPEG—Fundação de Amparo à Pesquisa do Estado de Goiás for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lúcia Guerra Monteiro.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tome, A.C., Mársico, E.T., da Silva, F.A. et al. Achachairú (Garcinia humilis): chemical characterization, antioxidant activity and mineral profile. Food Measure 13, 213–221 (2019). https://doi.org/10.1007/s11694-018-9934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9934-x

Keywords

Navigation