Skip to main content
Log in

Effects of extraction conditions on oxalate oxidase activity of germinated paddy rice (Oryza sativa L.)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Oxalic acid and its salts, oxalates, are end products of metabolism found widely in plant kingdom. Once consumed, these compounds can bind with calcium, to form calcium oxalate stones, the most common types of kidney stone. Oxalate oxidase (OxO), an oxalate-degrading enzyme, is produced by the metabolic activities of microorganisms or plants, especially during the germination of cereal grains. The purpose of this study was to investigate impacts of extraction conditions on the OxO activity of germinated paddy rice (Oryza sativa L.) using Ultra-high performance liquid chromatography. The effects of three factors namely pH (2–7), solvent-to-sample ratios (3:1–8:1 v/w), and extraction time (15–75 min) were investigated. The results showed that the activity was higher at more acidic pH, ranging from 2 to 4. In addition, the OxO activity rose as the solvent-to-sample ratios increased and reached a peak at the ratio of 5:1 before dropping rapidly. Prolonging extraction times, from 15 to 60 min, resulted in increases in the OxO activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C.V.:

Coefficient of variation

DW:

Dry weight

OxO:

Oxalate oxidase

SD:

Standard deviation

UHPLC:

Ultra-high performance liquid chromatography

References

  1. N.K. Huynh, D.H.M. Nguyen, H.V.H. Nguyen, Reduction of soluble oxalate in cocoa powder by the addition of calcium and ultrasonication. J. Food Compos. Anal. 93, 103593 (2020). https://doi.org/10.1016/j.jfca.2020.103593

    Article  CAS  Google Scholar 

  2. H.V.H. Nguyễn, G.P. Savage, Oxalate content of New Zealand grown and imported fruits. J. Food Compos. Anal. 31(2), 180–184 (2013). https://doi.org/10.1016/j.jfca.2013.06.001

    Article  CAS  Google Scholar 

  3. H.V.H. Nguyễn, H.M. Lê, G.P. Savage, Effects of maturity at harvesting and primary processing of cocoa beans on oxalate contents of cocoa powder. J. Food Compos. Anal. 67, 86–90 (2018). https://doi.org/10.1016/j.jfca.2018.01.007

    Article  CAS  Google Scholar 

  4. N. Salgado, M.A. Silva, M.E. Figueira, H.S. Costa, T.G. Albuquerque, Oxalate in foods: extraction conditions, analytical methods, occurrence, and health implications. Foods 12(17), 3201 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G.P. Savage, L. Vanhanen, S.M. Mason, A.B. Ross, Effect of cooking on the soluble and insoluble oxalate content of some New Zealand foods. J. Food Compos. Anal. 13(3), 201–206 (2000). https://doi.org/10.1006/jfca.2000.0879

    Article  CAS  Google Scholar 

  6. W. Donelan, S. Li, P.R. Dominguez-Gutierrez, A. Anderson Iv, L.-J. Yang, C. Nguyen, B.K. Canales, Expression and secretion of glycosylated barley oxalate oxidase in Pichia pastoris. PLoS ONE 18(5), e0285556 (2023). https://doi.org/10.1371/journal.pone.0285556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. Hu, Z. Guo, Purification and characterization of oxalate oxidase from wheat seedlings. Acta Physiol. Plant. 31(2), 229–235 (2009). https://doi.org/10.1007/s11738-008-0222-y

    Article  CAS  Google Scholar 

  8. M.P. Jacob Kizhakedathil, S. Suvarna, P.D. Belur, R. Wongsagonsup, E.M.G. Agoo, J.I.B. Janairo, Optimization of oxalate-free starch production from Taro flour by oxalate oxidase assisted process. Prep. Biochem. Biotechnol. 51(2), 105–111 (2021)

    Article  PubMed  Google Scholar 

  9. A. Sjöde, S. Winestrand, N.-O. Nilvebrant, L.J. Jönsson, Enzyme-based control of oxalic acid in the pulp and paper industry. Enzym. Microb. Technol. 43(2), 78–83 (2008). https://doi.org/10.1016/j.enzmictec.2007.11.014

    Article  CAS  Google Scholar 

  10. S. Godara, C.S. Pundir, Urinary & serum oxalate determination by oxalate oxidase immobilized on to affixed arylamine glass beads. Indian J. Med. Res. 127(4), 370–376 (2008)

    CAS  PubMed  Google Scholar 

  11. H.-Y. Pan, M.M. Whittaker, R. Bouveret, A. Berna, F. Bernier, J.W. Whittaker, Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris. Biochem. Biophys. Res. Commun. 356(4), 925–929 (2007). https://doi.org/10.1016/j.bbrc.2007.03.097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Kanauchi, J. Milet, C.W. Bamforth, Oxalate and Oxalate Oxidase in Malt. J. Inst. Brew. 115(3), 232–237 (2009). https://doi.org/10.1002/j.2050-0416.2009.tb00374.x

    Article  CAS  Google Scholar 

  13. S. Abbas, S. Murtaza, F. Aslam, A. Khawar, S. Rafique, S. Naheed, Effect of processing on nutritional value of rice (Oryza sativa). World J. Med. Sci. 6, 68–73 (2011)

    Google Scholar 

  14. M. Vuletić, V.H.-T. Šukalović, Characterization of cell wall oxalate oxidase from maize roots. Plant Sci. 157(2), 257–263 (2000). https://doi.org/10.1016/S0168-9452(00)00290-9

    Article  PubMed  Google Scholar 

  15. R. Sathishraj, A. Augustin, Oxalic acid and oxalate oxidase enzyme in Costus pictus D. Don. Acta Physiol. Plant. 34(2), 657–667 (2012). https://doi.org/10.1007/s11738-011-0866-x

    Article  CAS  Google Scholar 

  16. P.K. Robinson, Enzymes: principles and biotechnological applications. Essays Biochem. 59, 1–41 (2015). https://doi.org/10.1042/bse0590001

    Article  PubMed  PubMed Central  Google Scholar 

  17. S. Zargarchi, S. Saremnezhad, Gamma-aminobutyric acid, phenolics and antioxidant capacity of germinated indica paddy rice as affected by low-pressure plasma treatment. LWT. 102, 291–294 (2019). https://doi.org/10.1016/j.lwt.2018.12.014

    Article  CAS  Google Scholar 

  18. R. Kumar, V. Hooda, C.S. Pundir, Purification and partial characterization of oxalate oxidase from leaves of forage Sorghum (Sorghum vulgare var. KH-105) seedlings. Indian J. Biochem. Biophys. 48(1), 42–46 (2011)

    CAS  PubMed  Google Scholar 

  19. S. Winestrand, M.L. Gandla, F. Hong, Q.Z. Chen, L.J. Jönsson, Oxalate decarboxylase of Trametes Versicolor: biochemical characterization and performance in bleaching filtrates from the pulp and paper industry. J. Chem. Technol. Biotechnol. 87(11), 1600–1606 (2012). https://doi.org/10.1002/jctb.3801

    Article  CAS  Google Scholar 

  20. Y. Hu, M. Xiang, C. Jin, Y. Chen, Characteristics and heterologous expressions of oxalate degrading enzymes oxalate oxidases and their applications on immobilization, oxalate detection, and medical usage potential. J. Biotech Res. 6, 63 (2015)

    CAS  Google Scholar 

  21. R.D. Crapnell, P.S. Adarakatti, C.E. Banks, Electroanalytical overview: the electroanalytical detection of oxalate. Sens. Actuators Rep. 6, 100176 (2023). https://doi.org/10.1016/j.snr.2023.100176

    Article  Google Scholar 

  22. H. Bisswanger, Enzyme assays. Perspect. Sci. 1(1–6), 41–55 (2014). https://doi.org/10.1016/j.pisc.2014.02.005

    Article  Google Scholar 

  23. T. Skern, Exploring Protein Structure: Principles and Practice (Springer International Publishing, Cham, 2018). https://doi.org/10.1007/978-3-319-76858-8

    Book  Google Scholar 

  24. K. Kumar, Studies on Novel Oxalate Oxidase Produced by an Endophytic Bacterium Ochrobactrum intermedium CL6 (National Institute of Technology Karnataka, Surathkal, 2017)

    Google Scholar 

  25. T. Dahiya, S. Yadav, N. Chauhan, P. Handa, C.S. Pundir, Strawberry Fruit Oxalate Oxidase — Detection, purification, characterization and physiological role. J. Plant Biochem. Biotechnol. 19(2), 247–250 (2010). https://doi.org/10.1007/BF03263349

    Article  Google Scholar 

  26. L. Cui, X. Hou, W. Li, Y. Leng, Y. Zhang, X. Li, W. Kang, Dynamic changes of secondary metabolites and tyrosinase activity of Malus pumila flowers. BMC Chem. 13(1), 81 (2019). https://doi.org/10.1186/s13065-019-0602-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Zhu, X. Liu, Optimization of extraction process of crude polysaccharides from Pomegranate peel by response surface methodology. Carbohydr. Polym. 92(2), 1197–1202 (2013). https://doi.org/10.1016/j.carbpol.2012.10.073

    Article  CAS  PubMed  Google Scholar 

  28. G.T.N. Nguyen, T.M. Nguyen, Effect of extraction conditions (temperature, pH and time) by cellulase on chemical properties of dried oyster mushroom (Pleurotus sajor-caju) extract. Food Res. 5(3), 351–358 (2021). https://doi.org/10.26656/fr.2017.5(3).613

    Article  Google Scholar 

  29. A.-K. Landbo, K. Kaack, A.S. Meyer, Statistically designed two step response surface optimization of enzymatic prepress treatment to increase juice yield and lower turbidity of elderberry juice. Innovative Food Science & Emerging Technologies. 8(1), 135–142 (2007). https://doi.org/10.1016/j.ifset.2006.08.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by International University – VNU-HCM under the grant number SV2021-BT-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha V. H. Nguyen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 4 and 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, Q.M., Nguyen, H.V.H. Effects of extraction conditions on oxalate oxidase activity of germinated paddy rice (Oryza sativa L.). Food Measure 18, 2631–2638 (2024). https://doi.org/10.1007/s11694-023-02342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02342-4

Keywords

Navigation