Skip to main content
Log in

Development of an ic-ELISA and a TRFICA for the detection of fipronil with a new hapten design

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Based on the new hapten of fipronil, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and time-resolved fluorescent immunochromatographic assay (TRFICA) for the determination of fipronil were developed. The sensitivity (IC50) of the ic-ELISA method was 2.33 ± 0.14 ng mL−1 (n = 3), and the limit of detection (LOD) (IC20) was 0.27 ± 0.02 ng mL−1 (n = 3). The cross-reaction rates of the three fipronil metabolites were all higher than 66.7%, and those of the three analogs were no more than 0.05%. The TRFICA was optimized with a handheld reader. The LOD was 0.862 ng mL−1 (n = 3). In this study, the pretreatment methods of samples such as Chinese cabbage, spinach, apple and egg, were explored. Methanol and acetonitrile were used to extract different food samples and the diluents were optimized. Three concentration levels in the spiked food samples were detected by the two methods. The range of recovery was 88.65–116.32% for ic-ELISA and 95.48–112.61% for TRFICA. In this study, the accuracy of the two methods was also judged by testing commercial quality control samples. The results showed that the accuracy was 83.75%–113.33% for ic-ELISA and 98.33–107.13% for TRFICA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. S. Saini, M. Rani, B. Kumari, Environ. Monit. Assess. 186, 69 (2014). https://doi.org/10.1007/s10661-013-3356-3

    Article  CAS  PubMed  Google Scholar 

  2. X. Li, W. Ma, H. Li, Q.H. Zhang, Z.Y. Ma, Trends Food Sci. Technol. 97, 185 (2020). https://doi.org/10.1016/j.tifs.2020.01.018

    Article  CAS  Google Scholar 

  3. N.S. Singh, R. Sharma, S.K. Singh, D.K. Singh, Environ. Res. 199, 111316 (2021). https://doi.org/10.1016/j.envres.2021.111316

    Article  CAS  PubMed  Google Scholar 

  4. S. Amrith, T. Gunasekara, T. Truong, F. Spurlock, R.S. Tjeerdema, J. Pestic. Sci. 32, 189 (2007). https://doi.org/10.1584/jpestics.R07-02

    Article  Google Scholar 

  5. S. Gonçalves, M.W. Vasconcelos, T.F.M. Mota, J.M.H. Lopes, L.J. Guimaraes, K.S.B. Miglioranza, N.C. Ghisi, Environ. Sci. Pollut. Res. 29, 79111 (2022). https://doi.org/10.1007/s11356-022-21135-8

    Article  Google Scholar 

  6. R. An, The European Union RASFF reported that “poisonous eggs” had spread to 20 countries or regions (The foodmate net, 2017). http://news.foodmate.net/2017/08/439722.html. Accessed 14 Aug 2017

  7. Z.L. He, X.H. Qi, Poisonous eggs were off the shelf in Taiwan. The residual excess of fluonitrile was up to 30 times as high as possible (The Paper, 2017). http://www.thepaper.cn/newsDetail_forward_1771374. Accessed 22 Aug 2017

  8. S. Hirashima, T. Amimoto, Y. Iwamoto, K. Takeda, Environ. Sci. Pollut. Res. 30, 89877 (2023). https://doi.org/10.1007/s11356-023-28571-0

    Article  CAS  Google Scholar 

  9. P. Bhatt, S. Gangola, S. Ramola, M. Bilal, K. Bhatt, Y. Huang, Z. Zhou, S. Chen, Microbiol. Res. 266, 127247 (2023). https://doi.org/10.1016/j.micres.2022.127247

    Article  CAS  PubMed  Google Scholar 

  10. Y.L. Zhou, S.W. Yue, B.W. Cheng, Q. Zhao, Food Chem. 377, 132021 (2022). https://doi.org/10.1016/j.foodchem.2021.132021

    Article  CAS  PubMed  Google Scholar 

  11. Y. Wei, H. Bao, Z. He, G. Huang, M. Feng, Z. Zhu, J. He, Chin. J. Chromatogr. 40, 206 (2022). https://doi.org/10.3724/sp.j.1123.2021.04007

    Article  CAS  Google Scholar 

  12. X.H. Wu, Y. Yu, J. Xu, F.S. Dong, X.A. Liu, P.Q. Du, D.M. Wei, Y.Q. Zheng, PLoS ONE 12, 0173690 (2017). https://doi.org/10.1371/journal.pone.0173690

    Article  CAS  Google Scholar 

  13. R. Kaur, K. Mandal, R. Kumar, B. Singh, J. AOAC Int. 98, 464 (2015). https://doi.org/10.5740/jaoacint.13-066

    Article  CAS  PubMed  Google Scholar 

  14. A. Duhan, B. Kumari, S. Duhan, Bull. Environ. Contam. Toxicol. 94, 260 (2015). https://doi.org/10.1007/s00128-014-1447-7

    Article  CAS  PubMed  Google Scholar 

  15. T. Chen, J. Hu, Y. Chen, Y. Liu, Y. Li, H. Xu, Anal. Chim. Acta 1190, 339263 (2022). https://doi.org/10.1016/j.aca.2021.339263

    Article  CAS  PubMed  Google Scholar 

  16. T.P. Ferreira, G.F. Bauerfeldt, R.N. Castro, V.S. Magalhães, M.C. Alves, F.B. Scott, Y.P. Cid, Bull. Environ. Contam. Toxicol. 108, 225 (2022). https://doi.org/10.1007/s00128-021-03369-3

    Article  CAS  PubMed  Google Scholar 

  17. S. Nagyová, P. Tölgyessy, S. Hrouzková, J. Chromatogr. A 1710, 464431 (2023). https://doi.org/10.1016/j.chroma.2023.464431

    Article  CAS  PubMed  Google Scholar 

  18. S. Charernchai, M. Chikae, T.T. Phan, W. Wonsawat, D. Hirose, Y. Takamura, Anal. Chem 94, 5099 (2022). https://doi.org/10.1021/acs.analchem.1c05401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. F. Li, M.L. You, S.X. Li, J. Hu, C. Liu, Y. Gong, H.Y. Yang, X. Feng, Biotechnol. Adv. 39, 107442 (2020). https://doi.org/10.1016/j.biotechadv.2019.107442

    Article  CAS  PubMed  Google Scholar 

  20. S. Lv, X. Xu, L. Guo, L. Xu, L. Liu, H. Kuang, C. Xu, Analyst 148, 1703 (2023). https://doi.org/10.1039/D3AN00084B

    Article  CAS  PubMed  Google Scholar 

  21. K.H. Wu, W.C. Huang, S.C. Chang, C.H. Kao, R.H. Shyu, Mater. Express 11, 63 (2021)

    Article  CAS  Google Scholar 

  22. X.Q. Tao, Y.Y. Peng, J.W. Liu, J. Food Drug Anal. 28, 575 (2020). https://doi.org/10.38212/2224-6614.1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. F. Yan, Z. Sun, H. Zhang, X. Sun, Y. Jiang, Z. Bai, Microchim. Acta 186, 1 (2019). https://doi.org/10.1007/s00604-019-3688-y

    Article  CAS  Google Scholar 

  24. Q.Y. Xie, Y.H. Wu, Q.R. Xiong, H.Y. Xu, Y.H. Xiong, K. Liu, J. Yong, W.H. Lai, Biosens. Bioelectron. 54, 262 (2014). https://doi.org/10.1016/j.bios.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  25. X. Lu, J. Ji, M. Li, H.W. Xu, J.D. Sun, L.P. Wang, Y.Z. Zhang, X.L. Sun, Food Chem. 370, 131027 (2022). https://doi.org/10.1016/j.foodchem.2021.131027

    Article  CAS  PubMed  Google Scholar 

  26. C. Song, A. Zhi, Q. Liu, J. Yang, G. Jia, J. Shervin, G. Zhang, Biosens. Bioelectron. 50, 62 (2013). https://doi.org/10.1016/j.bios.2013.06.022

    Article  CAS  PubMed  Google Scholar 

  27. M. Majdinasab, M. Sheikh-Zeinoddin, S. Soleimanian-Zad, P. Li, Q. Zhang, X. Li, J. Li, Food Control 47, 126 (2015). https://doi.org/10.1016/j.foodcont.2014.06.044

    Article  CAS  Google Scholar 

  28. S. Wang, R.D. Allan, J.H. Skerritt, I.R.J. Kennedy, Agric. Food Chem. 46, 3330 (1998). https://doi.org/10.1021/jf9800920

    Article  CAS  Google Scholar 

  29. F. Xu, Z.Y. Jin, S.Y. Zou, C.Q. Chen, Q.F. Song, S.C. Deng, W. Xiao, X.L. Zhang, A.Q. Jia, Y. Tang, Talanta 214, 120865 (2020). https://doi.org/10.1016/j.talanta.2020.120865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y. Zhang, J.W. Liu, W.J. Zheng, L. Wang, H.Y. Zhang, G.Z. Fang, S. Wang, J. Environ. Sci. Health Part B 43, 127 (2008). https://doi.org/10.1080/03601230701795056

    Article  CAS  Google Scholar 

  31. J. Yao, Z. Wang, L. Guo, X. Xu, L. Liu, H. Kuang, C. Xu, Food Chem. 356, 129710 (2021). https://doi.org/10.1016/j.foodchem.2021.129710

    Article  CAS  PubMed  Google Scholar 

  32. L. Yin, X. Hu, M. Hao, J. Shi, X. Zou, K.D. Dusabe, J. Food Meas. Charact 17, 3125 (2023). https://doi.org/10.1007/s11694-023-01849-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Project program of Tianjin Key Laboratory of Food Quality and Health, Tianjin University of Science and Technology, P. R. China (No. TJS202104) and the National Program on Key Research Project of China (No. 2018YFE0200402)

Author information

Authors and Affiliations

Authors

Contributions

Junwei Liu: Conceptualization, methodology, project administration, writing—review and editing, resources; Yuqing Wu: Investigation, data curation, formal analysis, validation, writing—original draft, visualization; Chenchen Liu: Investigation, validation, formal analysis, data curation, writing—original draft; Yan Cai: Methodology, validation, formal analysis; Yang Lu: Conceptualization, methodology, supervision, funding acquisition, writing—review and editing.

Corresponding authors

Correspondence to Junwei Liu or Yang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Ethics Committee of Tianjin University of Science and Technology for the use of Laboratory Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wu, Y., Liu, C. et al. Development of an ic-ELISA and a TRFICA for the detection of fipronil with a new hapten design. Food Measure 18, 2561–2572 (2024). https://doi.org/10.1007/s11694-023-02336-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02336-2

Keywords

Navigation