Skip to main content
Log in

Heat treatment induced structural change and aggregation behavior of Moringa Oleifera seed salt-soluble protein

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aimed to investigate effects of heat treatment temperatures (60℃, 70℃, 80℃, 90℃, 100℃) and times (10 min, 30 min, 60 min) on the aggregation behavior of Moringa Oleifera seed salt-soluble protein (MOSP). With the increase of heating temperature and time, the MOSP solutions were changed from a more transparent state to a cloudy and opaque state, the absorbance value of the MOSP solution increased significantly, and the particle size gradually increased to a maximum of 1220.33 nm (100℃, 30 min). The polymer dispersion index (PDI) also increased and the maximum PDI of MOSP (100℃, 10 min) was 0.53, but the absolute value of the zeta-potential was gradually decreased. With the increase of heating temperature and heating time, the β-sheet content of MOSP was increased to 30.8%, while the α-helix content of MOSP decreased. There was no obvious change in the subunit distribution of the heat-induced MOSP. The spectrum analysis displayed that heat treatment led to the exposure of the hydrophobic residues in MOSP, but as the heating temperature was further increased to 90℃, re-embedding of the hydrophobic groups was observed due to the formation of aggregates. The total sulfhydryl group (-SHT) increased with the increase of temperature, while the free sulfhydryl group (-SHF)first decreased and then increased during short-term heating (10 and 30 min). The maximum content of -SHF reached 4.40% and the content of disulfide bonds was 11.97% (90℃, 30 min). These changes could have a significant impact on protein products and might spur innovation in new protein applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. A.M.M. da Silva, F.S. Almeida, A.C.K. Sato, J. Food Eng. (2021). https://doi.org/10.1016/j.jfoodeng.2020.110277

    Article  Google Scholar 

  2. L. Gopalakrishnan, K. Doriya, D.S. Kumar, Food Sci. Human Wellness. (2016). https://doi.org/10.1016/j.fshw.2016.04.001

    Article  Google Scholar 

  3. A.T.A. Baptista, M.O. Silva, R.G. Gomes, R. Bergamasco, M.F. Vieira, A.M.S. Vieira, Sep. Purif. Technol. (2017). https://doi.org/10.1016/j.seppur.2017.02.040

    Article  Google Scholar 

  4. Z.F. Ma, J. Ahmad, H. Zhang, I. Khan, S. Muhammad, S Afr. J. Bot. (2020). https://doi.org/10.1016/j.sajb.2018.12.002

    Article  Google Scholar 

  5. D. Meireles, J. Gomes, L. Lopes, M. Hinzmann, J. Machado, Adv. Tradit Med. (2020). https://doi.org/10.1007/s13596-020-00468-0

    Article  Google Scholar 

  6. R.W. Saa, E.N. Fombang, E.B. Ndjantou, N.Y. Njintang, Food Sci. Nutr. (2019). https://doi.org/10.1002/fsn3.1057

    Article  PubMed  PubMed Central  Google Scholar 

  7. E.C. Osemwota, A.M. Alashi, R.E. Aluko, Int. J. Food Sci. Technol. (2022). https://doi.org/10.1111/ijfs.15608

    Article  Google Scholar 

  8. J.J. Wu, X. Zhou, L. Zhou, W. Liu, J.Z. Zhong, Y.J. Zhang, C.M. Liu, J. Food Sci. (2022). https://doi.org/10.1111/1750-3841.16104

    Article  PubMed  PubMed Central  Google Scholar 

  9. C.B.B. Bassogog, C.E. Nyobe, S.P. Ngui, S.R. Minka, M.A.M. Mune, Food Chem. (2022). https://doi.org/10.1016/j.foodchem.2022.132546

    Article  Google Scholar 

  10. Q.H. Du, Y.H. Wu, S. Xue, Z. Fu, LWT-Food Sci. Technol. (2022). https://doi.org/10.1016/j.lwt.2021.112988

    Article  Google Scholar 

  11. Q.H. Du, Y.H. Wu, S.Q. Tang, M.H. Ren, Z. Fu, LWT-Food Sci. Technol. (2021). https://doi.org/10.1111/ijfs.15254

    Article  Google Scholar 

  12. Z. Huang, X. Huang, W. Zhou, L. Zhang, F. Liu, J. Li, S. Peng, Y. Cao, Y. Li, R. Li, J. Li, Int. J. Food Sci. Technol. (2021). https://doi.org/10.1111/ijfs.14975

    Article  Google Scholar 

  13. A. Jain, R. Subramanian, B. Manohar, C. Radha, J. Food Sci. Technol. (2019). https://doi.org/10.1007/s13197-019-03690-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. S.Q. Tang, Q.H. Du, Z. Fu, Ultrason. Sonochem. (2021). https://doi.org/10.1016/j.ultsonch.2020.105357

    Article  PubMed  PubMed Central  Google Scholar 

  15. R.J.B.M. Delahaije, P.A. Wierenga, M.L.F. Giuseppin, H. Gruppen, J. Agric. Food Chem. (2015). https://doi.org/10.1021/acs.jafc.5b00927

    Article  PubMed  Google Scholar 

  16. N. Wang, A.S.M. Saleh, Y. 13., Z. Gao, P. Wang, Y.M. Duan, Z.G. Xiao, J. Food Sci. Technol. -Mysore. (2019). https://doi.org/10.1007/s13197-019-03984-3

    Article  Google Scholar 

  17. J.J. Xie, Y.P. Li, X.Q. Qu, Z.L. Kang, J. Food Process. Eng. (2022). https://doi.org/10.1111/jfpe.14008

    Article  Google Scholar 

  18. J.R. Ma, H.M. Chen, W.J. Chen, J.L. Wu, Z.Q. Li, M. Zhang, Q.P. Zhong, W.X. Chen, Food Chem. (2022). https://doi.org/10.1016/j.foodchem.2022.133031

    Article  PubMed  Google Scholar 

  19. J. Adamcik, J.M. Jung, J. Flakowski, P. De Los Rios, G. Dietler, R. Mezzenga, Nat. Nanotechnol. (2010). https://doi.org/10.1038/Nnano.2010.59

    Article  PubMed  Google Scholar 

  20. K.M. Akio Kato, K. Kobayashi, J. Agric. Food Chem. 41, 540–543 (1993)

    Article  Google Scholar 

  21. B.O. Ling, S.H. Ouyang, S.J. Wang, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.03.072

    Article  PubMed  Google Scholar 

  22. Y.L. Yu, Y. Guan, J.B. Liu, W. Hedi, Y.D. Yu, T. Zhang, Food Hydrocoll. (2021). https://doi.org/10.1016/j.foodhyd.2021.107071

    Article  Google Scholar 

  23. D. Yu, X. Zhang, W. Zou, H. Tang, F. Yang, L. Wang, W. Elfalleh, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-020-00716-6

    Article  Google Scholar 

  24. T. BEVERIDGE, S.J. TOMA, J. Food Sci. Technol. -Mysore. 39(1), 49–51 (1974)

    CAS  Google Scholar 

  25. Y.L. Yu, Y. Guan, H.D. Wen, Y. Zhang, J.B. Liu, T. Zhang, LWT-Food Sci. Technol. (2021). https://doi.org/10.1016/j.lwt.2021.112094

    Article  Google Scholar 

  26. S.M. Yi, Q. Wu, S.N. Tong, W. Wang, X.P. Li, H.B. Mi, Y.X. Xu, J.R. Li, J. Food Sci. (2022). https://doi.org/10.1111/1750-3841.16255

    Article  PubMed  Google Scholar 

  27. Q. Zhang, W.T. Yue, D. Zhao, L. Chen, Z.L. Xu, D.R. Lin, W. Qin, Food Chem. (2022). https://doi.org/10.1016/j.foodchem.2022.132556

    Article  PubMed  Google Scholar 

  28. X.F. Zhang, X.M. Sun, F. Gao, J.Q. Wang, C.N. Wang, J. Sci. Food Agric. (2019). https://doi.org/10.1002/jsfa.9264

    Article  PubMed  Google Scholar 

  29. H. Wang, N. Wang, X. Chen, Z.A. Wu, W.Y. Zhong, D.Y. Yu, H.W. Zhang, Food Hydrocoll. (2022). https://doi.org/10.1016/j.foodhyd.2022.107911

    Article  Google Scholar 

  30. M.N. Perovic, M.G. Antov, LWT-Food Sci. Technol. (2022). https://doi.org/10.1016/j.lwt.2022.113545

    Article  Google Scholar 

  31. B. WANG, Y. Yang, H.C. FAN, T.T. Li, N. Zhang, Y.G. Shi, X.Q. Zhu, J. Food Safety Quality. (2022). https://doi.org/10.19812/j.cnki.jfsq11-5956/ts.2022.16.023

    Article  Google Scholar 

  32. C. Peng, D. Xin, D.Q. Yang, Y.D. Dong, S. Shi, X.F. Xia, Sci. Technol. Food Industry. (2021). https://doi.org/10.13386/j.issn1002-0306.2018.24.054

    Article  Google Scholar 

  33. M. Soleimanifar, S.M. Jafari, E. Assadpour, Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2019.105572

    Article  Google Scholar 

  34. J.W. Wang, T.Y. Wang, G.P. Yu, X.Y. Li, H.C. Liu, T. Liu, J.S. Zhu, LWT-Food Sci. Technol. (2022). https://doi.org/10.1016/j.lwt.2021.113005

    Article  Google Scholar 

  35. L. Jiang, J. Wang, Y. Li, Z. Wang, J. Liang, R. Wang, Y. Chen, W. Ma, B. Qi, M. Zhang, Food Res. Int. (2014). https://doi.org/10.1016/j.foodres.2014.04.022

    Article  PubMed  Google Scholar 

  36. X. Song, C. Zhou, F. Fu, Z. Chen, Q. Wu, Ind. Crop Prod. (2013). https://doi.org/10.1016/j.indcrop.2012.08.005

    Article  Google Scholar 

  37. W. Liu, Z.Q. Zhang, C.-M. Liu, M.Y. Xie, Z.C. Tu, J.H. Liu, R.H. Liang, Food Chem. (2010). https://doi.org/10.1016/j.foodchem.2010.04.079

    Article  PubMed  PubMed Central  Google Scholar 

  38. N.S.H.U. Kalapathy, K.C. Rhee, J. Am. Oil Chem. Soc. (1997). https://doi.org/10.1007/s11746-997-0123-z

    Article  Google Scholar 

  39. S.S. Jiang, M.A. Hussain, J.J. Cheng, Z.M. Jiang, H. Geng, Y. Sun, C.B. Sun, J.C. Hou, LWT-Food Sci. Technol. (2018). https://doi.org/10.1016/j.lwt.2018.08.028

    Article  Google Scholar 

  40. K.P.D.J.E. KINSELLA, J. Colloid Interface Sci. 139(2), 551–560 (1990)

    Article  Google Scholar 

  41. Z.J. Chen, X.W. Wang, X. Jing, Trans. Chin Soc. Agric Eng. (2022). https://doi.org/10.11975/j.issn.1002-6819.2020.19.035

    Article  Google Scholar 

  42. K.Q. Wang, S.Z. Luo, X.Y. Zhong, J. Cai, S.T. Jiang, Z. Zheng, Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2016.07.037

    Article  PubMed  Google Scholar 

  43. Z.Y. Ren, Z.Z. Chen, Y.Y. Zhang, X.R. Lin, Z.M. Li, W.Y. Weng, H.S. Yang, B. Li, LWT-Food Sci. Technol. (2021). https://doi.org/10.1016/j.lwt.2021.111999

    Article  Google Scholar 

  44. C.H. Tang, X.Q. Yang, Z. Chen, W. Hui, Z.Y. Peng, J. Food Biochem. (2005). https://doi.org/10.1111/j.1745-4514.2005.00038.x

    Article  Google Scholar 

  45. Z.S. Zhu, A. Pius Bassey, Y. Cao, Y. Ma, M. Huang, H. Yang, Food Res. Int. (2022). https://doi.org/10.1016/j.foodres.2022.111725

    Article  PubMed  PubMed Central  Google Scholar 

  46. Q. Liu, R. Geng, J.Y. Zhao, Q. Chen, B.H. Kong, J. Agric. Food Chem. (2015). https://doi.org/10.1021/acs.jafc.5b01331

    Article  PubMed  Google Scholar 

  47. X.Y. Yang, L.S. Shi, T. Gong, C.Y. Hu, Y.R. Guo, Y.H. Meng, Int. J. Biol. Macromol. (2022). https://doi.org/10.1016/j.ijbiomac.2022.09.223

    Article  PubMed  PubMed Central  Google Scholar 

  48. M.A. Malik, C.S. Saini, Food Chem. (2019). https://doi.org/10.1007/s11947-013-1139-z

    Article  PubMed  Google Scholar 

  49. R. He, H.Y. He, D.F. Chao, X.R. Ju, R. Aluko, Food Bioprocess. Technol. (2014). https://doi.org/10.1016/j.foodchem.2018.10.060

    Article  Google Scholar 

  50. P.H. Risso, D.M. Borraccetti, C. Araujo, M.E. Hidalgo, C.A. Gatti, Colloid Polym. Sci. (2008). https://doi.org/10.1007/s00396-008-1906-y

    Article  Google Scholar 

  51. R. Lajnaf, L. Picart-Palmade, E. Cases, H. Attia, S. Marchesseau, M.A. Ayadi, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.07.064

    Article  PubMed  Google Scholar 

  52. J.M. Wang, N. Xia, X.Q. Yang, S.W. Yin, J.R. Qi, X.T. He, D.B. Yuan, L.J. Wang, J. Agric. Food Chem. (2012). https://doi.org/10.1021/jf205128v

    Article  PubMed  Google Scholar 

  53. G. Bu, Y. Luo, Z. Zheng, H. Zheng, Food Agric. Immunol. (2009). https://doi.org/10.1080/09540100903026116

    Article  Google Scholar 

  54. K.L. Liu, J.B. Zheng, F.S. Chen, J. Food Sci. Technol. -Mysore. (2021). https://doi.org/10.1007/s13197-020-04648-3

    Article  Google Scholar 

  55. C. Schmitt, C. Bovay, A.M. Vuilliomenet, M. Rouvet, L. Bovetto, R. Barbar, C. Sanchez, Langmuir. (2009). https://doi.org/10.1021/la900501n

    Article  PubMed  Google Scholar 

  56. C.H. Tang, Adv. Colloid Interface Sci., (2021). https://doi.org/10.1016/j.cis.2021.102432

Download references

Acknowledgements

This work was supported by The Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi (2023KY0014) (People’s Republic of China) and the Project of Bama County for Talents in Science and Technology (20210031) (People’s Republic of China).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the work.

Corresponding author

Correspondence to Zhen Fu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics statement

Ethics approval was not required for this research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JW., Wu, YH., Liu, XL. et al. Heat treatment induced structural change and aggregation behavior of Moringa Oleifera seed salt-soluble protein. Food Measure 18, 1121–1132 (2024). https://doi.org/10.1007/s11694-023-02276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02276-x

Keywords

Navigation