Skip to main content
Log in

Impact of microencapsulated bael pulp waste pectin as potential prebiotic on the viability of Bacillus clausii and Saccharomyces boulardii under simulated intestinal conditions

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Microencapsulation, as one of the synergistic methods, has shown significant effects on probiotic survival. The main objective of the present study was to examine the effect of bael pulp waste pectin as a prebiotic on the survivability of two probiotics (Bacillus clausii and Saccharomyces boulardii) individually under simulated digestive conditions after microencapsulation. Probiotics were microencapsulated with and without pectin (used as a control) by the extrusion method. Furthermore, the encapsulation efficiency of the beads was examined and the viability of probiotics along with moisture content and swelling behavior, was evaluated by subjecting beads to different artificial gastrointestinal conditions and compared with the control beads. As a result, encapsulation with prebiotic pectin exhibited a significant (P < 0.05) effect on the survivability of B. clausii and S. boulardii. Probiotics microencapsulated with pectin seemed to be more stable at refrigeration temperature compared to probiotics microencapsulated without pectin for up to 30 days of storage. Therefore, it was concluded that the bael pulp waste pectin could be used as an effective prebiotic for the development of synbiotic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations, World Health Organization Expert Consultation, Rome, Italy (2001)

  2. H. Li, T. Zhang, C. Li, S. Zheng, H. Li, J. Yu, LWT - Food Sci. Technol. 122, 109033 (2020)

    Article  CAS  Google Scholar 

  3. M.S. Abbas, F. Saeed, M. Afzaal, L. Jianfeng, M. Hussain, A. Ikram, A. Jabeen, J. Food Process. Preserv 46, e16689 (2022)

  4. F. Shoaei, A. Heshmati, R. Mahjub, A.D. Garmakhany, M. Taheri, Sci. Rep. 12, 6200 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. P.E. Ramos, M.A. Cerqueira, J.A. Teixeira, A.A. Vicente, Crit. Rev. Food Sci. Nutr. 58, 1864–1877 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. D.E. Hoffmann, C.M. Fraser, F.B. Palumbo, J. Ravel, K. Rothenberg, V. Rowthorn, J. Schwartz, Policy Forum. 342, 314–315 (2013)

    CAS  Google Scholar 

  7. L.R. Lopetuso, F. Scaldaferri, F. Franceschi, A. Gasbarrini, Gastroenterol. Hepatol. 10, 943–948 (2016)

    CAS  Google Scholar 

  8. E.C. Nista, M. Candelli, F. Cremonini, I.A. Cazzato, M.A. Zocco, F. Franceschi, G. Cammarota, G. Gasbarrini, A. Gasbarrini, Aliment. Pharmacol. Ther. 20, 1181–1188 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. E. Ghelardi, Y. Abreu, A.T. Abreu, C.B. Marzet, G. Álvarez, M. Calatayud, A.P. 3 Perez, Moschione Castro, Microorganisms. 10(6), 1246 (2022)

  10. P. Pais, V. Almeida, M. Yılmaz, M.C. Teixeira, J. Fungi. 6(2), 78 (2020)

    Article  CAS  Google Scholar 

  11. M.D. Piano, L. Morelli, G.P. Strozzi, S. Allesina, M. Barba, F. Deidda, P. Lorenzini, M. Ballare, F. Montino, M. Orsello, M. Sartori, E. Garello, S. Carmagnola, M. Pagliarulo, L. Capurso, Dig. Liver Dis. 38(2), S248–S255 (2006)

    Article  PubMed  Google Scholar 

  12. J. Slavin, Nutrients. 5(4), 1417–1435 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. W. Krasaekoopt, S. Watcharapoka, LWT - Food Sci. Technol. 57(2), 761–766 (2014)

    Article  CAS  Google Scholar 

  14. K.G.H. Desai, AAPS Pharm. Sci. Tech. 6(2), E202–E208 (2006)

    Article  Google Scholar 

  15. R. Surolia, A. Singh, Lett. Appl. NanoBioScience. 12(3), 83 (2022)

    Article  Google Scholar 

  16. R. Surolia, A. Singh, J. Biotech. Res. 13, 247–259 (2022)

    CAS  Google Scholar 

  17. R. Surolia, S. Ali, A. Singh, J. Pharm. Negat. 13(7), 766–777 (2022)

    Google Scholar 

  18. R. Kumar, U. Sood, V. GuptA, M. Singh, J. Scaria, R. Lal, Indian J. Microbiol. 60(1), 12–25 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. S. Singh, R. Gupta, S. Chawla, P. Gauba, M. Singh, R.K. Tiwari, S. Upadhyay, S. Sharma, S. Chanda, S. Gaur, Front. Nutr. 9, 971784 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  20. P. Muthukumarasamy, P. Allan-Wojtas, R.A. Holley, J. Food Sci. 71, 20–24 (2006)

    Article  Google Scholar 

  21. W. Krasaekoopt, B. Bhandari, H. Deeth, Int. Dairy. J. 14(8), 737–743 (2004)

    Article  CAS  Google Scholar 

  22. P. Darjani, M. Hosseini Nezhad, R. Kadkhodaee, E. Milani, LWT. 73, 162–167 (2016)

    Article  CAS  Google Scholar 

  23. K. Oberoi, A. Tolun, Z. Altintas, S. Sharma, Foods. 10, 1999 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Lee, Y.R. Ji, S. Lee, M.J. Choi, Y. Cho, J. Microbiol. Biotechnol. 29, 721–730 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. A. Muhammad, S. Farhan, A. Huda, I. Ali, Y. Iqra, S. Abdulrehman, J. Ahsan, A.S. Yasir, I. Fakhar, E.O. Chigozie, S.C. James, G.A. Chinaza, Int. J. Food Prop. 25(1), 2044–2054 (2022)

    Article  Google Scholar 

  26. D.T.A. Thu, D. Thesis, Swinburne University of Technology, (2021)

  27. Association of, Official Analytical Chemists (A.O.A.C.). Official Methods of Analysis, 16th edn. (Inc., U.S.A, 1995)

    Google Scholar 

  28. F. Munarin, P. Petrini, M.C. Tanzi, M.A. Barbosa, P.L. Granja, Soft Matter. 8(17), 4731–4739 (2012)

    Article  Google Scholar 

  29. T. Shinde, D. Sun-Waterhouse, J. Brooks, Food Bioproc Tech. 7, 1581–1596 (2014)

    Article  CAS  Google Scholar 

  30. Z. Motalebi Moghanjougi, M. Rezazadeh Bari, M. Alizadeh Khaledabad, S. Amiri, H. Almasi, Food Sci. Nutr. 9, 5103–5111 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. How, L. Pui, Food Measure. 15, 4899–4916 (2021)

    Article  Google Scholar 

  32. T.W. Yeung, I.J. Arroyo-Maya, D.J. McClements, D.A. Sela, Food Funct. 7, 1797–1804 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. M. Yao, J. Wu, B. Li, H. Xiao, D.J. McClements, L. Li, Food Hydrocoll. 72, 228–236 (2017)

    Article  CAS  Google Scholar 

  34. H.J. Park, X.G. Chen, X.Y. Li, D. Cha, Z.W. Sun, Carbohydr. Polym. 83, 1479–1485 (2010)

    Google Scholar 

  35. S. Siang, L. Wai, K. Nyam, L.P. Pui, Food Sci. Technol. 39 (2019)

  36. N. Larsen, T.B. Cahu, S.M.I. Saad, A. Blennow, L. Jespersen, Food Microbiol. 74, 11–20 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. S. Sudheer, P. Gangwar, Z. Usmani, M. Sharma, V.K. Sharma, S.S. Sana, F. Almeida, N.K. Dubey, D.P. Singh, N. Dilbaghi, H.R. Khayat Kashani, V.K. Gupta, B.N. Singh, M. Khayatkashani, S.M. Nabavi, Biochimie. 193, 38–63 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. K.N. Chen, M.J. Chen, J.R. Liu, C.W. Lin, H.Y. Chiu, J. Food Sci. 70, M260–M266 (2010)

    Google Scholar 

  39. D. Pak, A. Muthaiyan, R.S. Story, C.A. O’Bryan, S.O. Lee, P.G. Crandall, S.C. Ricke, J. Food Res. 2, 158e167 (2013)

    Article  Google Scholar 

  40. F. Naqash, F.A. Masoodi, S.A. Rather, S.M. Wani, A. Gani, Carbohydr. Polym. 168, 227e239 (2017). https://doi.org/10.1016/j.carbpol.2017.03.058

    Article  CAS  Google Scholar 

  41. S. Sathyabama, R. Vijayabharathi, P. Bruntha Devi, R. Vijayabharathi, V. Brindha Priyadharisini, LWT - Food Sci. Technol. 57(1), 419–425 (2014)

    Article  CAS  Google Scholar 

  42. J.T. Masilungan-Manuel, in International Conference on Advances in Science, Engineering and Technology (ICASET–17), (Manila, Philippines, 2017) pp. 18–19

  43. D. Arepally, T.K.J.L. Goswami, LWT. 99, 583–593 (2019)

    Article  CAS  Google Scholar 

  44. H. Rajabi, M. Ghorbani, S.M. Jafari, A.S. Mahoonak, G. Rajabzadeh, Food Hydrocoll. 51, 327–337 (2015)

    Article  CAS  Google Scholar 

  45. D. Lin, A.L. Kelly, V. Maidannyk, S. Miao, Food Hydrocoll. 110, 106165 (2021)

    Article  CAS  Google Scholar 

  46. R. Surolia, M.K. Dubey, T. Bhatnagar, Vegetos (2023). https://doi.org/10.1007/s42535-023-00614-4

  47. M. Zeashan, M. Afzaal, F. Saeed, A. Ahmed, T. Tufail, A. Ahmed, F.M. Anjum, Food Sci. Nutr. (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surolia, R., Prakash, A. & Singh, A. Impact of microencapsulated bael pulp waste pectin as potential prebiotic on the viability of Bacillus clausii and Saccharomyces boulardii under simulated intestinal conditions. Food Measure 18, 904–915 (2024). https://doi.org/10.1007/s11694-023-02254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02254-3

Keywords

Navigation