Skip to main content
Log in

Aminoethoxyvinylglycine and 1-methylcyclopropene treatments affect fruit quality and ethylene production in ‘Geum Hwang’ peach

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study evaluated the effect of preharvest aminoethoxyvinylglycine (AVG) and postharvest 1-methylcyclopropene (1-MCP) treatments on ethylene production in association with fruit quality changes during ‘Geum Hwang’ peach ripening. 75 mg L−1 of AVG solution was sprayed to peach trees 7 days before harvest, and 1 µL L−1 of 1-MCP gas was fumigated to fruits at harvest. Untreated peaches were used as a control. All samples were stored for 12 days at 8 °C, and analyses were performed at 4-days intervals. In terms of fruit quality, ethylene production and respiration rate levels in control fruits were 52.1% and 42.2% higher than in AVG-treated fruits and 53.2% and 45.5% higher than in 1-MCP-treated fruits, respectively, at the end of the storage period. The titratable acidity and flesh firmness values were 18.2% and 24.6% higher after AVG and 18.3% and 29.5% higher after 1-MCP treatments than in control samples. On day 8 of storage, lower peel color L* (13.5%) and b* (29.7%) values and higher soluble solids content (6.1%) were observed after 1-MCP but not AVG treatment. However, the peel color a* value was not affected by any treatment. In molecular analyses, AVG and 1-MCP reduced the expression of genes, such as 1-aminocyclopropane-1-carboxylate (ACC) synthase (PpACS1), ACC oxidase (PpACO1), ethylene-response sensor (PpERS1), and ethylene-insensitive 3 (PpEIN3). Additionally, the AVG treatment decreased the expression of PpACS1 (28.6%) on day 4 and PpACO1 (11.2% and 20.5%) and PpERS1 (34.6% and 21.4%) on days 4 and 8 compared to the 1-MCP treatment. In conclusion, AVG and 1-MCP treatments extended the storability and maintained the quality of ‘Geum Hwang’ peaches, with AVG displaying a more significant inhibitory effect, particularly, on the ethylene-related gene expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are included in this article.

References

  1. Korean Statistical Information Service, https://kosis.kr/index/index.do. Accessed 7 Feb 2023

  2. W.P. Xi, B. Zhang, L. Liang, J.Y. Shen, W.W. Wei, C.J. Xu, A.C. Allan, I.B. Ferguson, K.S. Chen, Plant. Cell. Environ. 35, 534–545 (2012). https://doi.org/10.1111/j.1365-3040.2011.02433.x

    Article  CAS  PubMed  Google Scholar 

  3. H. Hayama, T. Shimada, H. Fujii, A. Ito, Y. Kashimura, J. Exp. Bot. 57, 4071–4077 (2006). https://doi.org/10.1093/jxb.erl178

    Article  CAS  PubMed  Google Scholar 

  4. F.B. Abeles, P.W. Morgan, M.E. Saltveit, Ethylene in Plant Biology, 2nd edn (Academic Press, San Diego, 1992), pp. 120–221. https://doi.org/10.1016/C2009-0-03226-7

  5. M.E. Saltveit, Postharv. Biol. Technol. 15, 279–292 (1999). https://doi.org/10.1016/S0925-5214(98)00091-X

    Article  CAS  Google Scholar 

  6. C.S. Barry, J.J. Giovannoni, J. Plant. Growth Regul. 26, 143–159 (2007). https://doi.org/10.1007/s00344-007-9002-y

    Article  CAS  Google Scholar 

  7. C. Dias, A.L. Amaro, Ã.C. Salvador, A.J.D. Silvestre, A.M. Rocha, N. Isidora, M. Pintado, Antioxidants 24, 356 (2020). https://doi.org/10.3390/antiox9040356

    Article  CAS  Google Scholar 

  8. M.H. Wang, U.Y. Lee, K.S. Oh, E.G. Lee, Y.S. Hwang, Y.J. Ahn, J.P. Chun, CNU J. Agric. Sci. 39, 503–509 (2012). https://doi.org/10.7744/cnujas.2012.39.4.503

    Article  CAS  Google Scholar 

  9. H. Cai, X. An, S. Han, L. Jiang, M. Yu, R. Ma, Z. Yu, Postharv. Biol. Technol. 141, 50–57 (2018). https://doi.org/10.1016/j.postharvbio.2018.03.003

    Article  CAS  Google Scholar 

  10. H. Cai, S. Han, L. Jiang, M. Yu, R. Ma, Z. Yu, Food Res. Inter. 122, 573–584 (2019). https://doi.org/10.1016/j.foodres.2019.01.026

    Article  CAS  Google Scholar 

  11. J. Yoo, S. Ryu, C. Park, N.M. Win, H.W. Choi, J. Lee, H.K. Yun, H.Y. Jung, M.G. Choung, Y.J. Cho, I.K. Kang, Hortic. Sci. Technol. 37, 609–617 (2019). https://doi.org/10.7235/HORT.20190061

    Article  CAS  Google Scholar 

  12. J. Yoo, C. Park, J.G. Kwon, D.H. Lee, H.Y. Jung, Y.J. Cho, I.K. Kang, Hortic. Sci. Technol. 38, 364–373 (2020). https://doi.org/10.7235/HORT.20200035

    Article  Google Scholar 

  13. Y.B. Yu, S.F. Yang, Plant. Physiol. 64, 1074–1077 (1979). https://doi.org/10.1104/pp.64.6.1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Zhang, Y. Ma, C. Cong, L.A. Terry, C.B. Watkins, Z. Yu, Z.M. Cheng, Hortic. Res. 7, 208 (2020). https://doi.org/10.1038/s41438-020-00405-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J.A. Cline, HortScience 41, 377–383 (2006). https://doi.org/10.21273/HORTSCI.41.2.377

    Article  CAS  Google Scholar 

  16. R.D. Belding, G.R.W. Lokaj, HortScience 37, 1065–1068 (2002). https://doi.org/10.21273/HORTSCI.37.7.1065

    Article  CAS  Google Scholar 

  17. A.M. Bregoli, V. Ziosi, S. Biondi, B. Claudio, G. Costa, P. Torrigiani, Postharv Biol. Technol. 42, 31–40 (2006). https://doi.org/10.1016/j.postharvbio.2006.055.009

    Article  CAS  Google Scholar 

  18. Y.M. Park, Hortic. Environ. Technol. 53, 441–446 (2012). https://doi.org/10.1007/s13580-012-0174-4

    Article  CAS  Google Scholar 

  19. H. Liu, J. Cao, W. Jiang, Postharv Biol. Technol. 108, 111–118 (2015). https://doi.org/10.1016/j.postharvbio.2015.06.012

    Article  CAS  Google Scholar 

  20. A. Tadiello, V. Ziosi, A.S. Negri, M. Noferini, G. Fiori, N. Bussato, L. Sepen, G. Costa, L. Trainotti, BMC Plant. Biol. 16, 44 (2016). https://doi.org/10.1186/s12870-016-0730-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. K.L.C. Wang, H. Li, J.R. Ecker, Plant Cell 14, S131–S151 (2002). https://doi.org/10.1105/tpc.001768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Tatsuki, T. Haji, M. Yamaguchi, J. Exp. Bot. 57, 1281 (2006). https://doi.org/10.1093/jxb/erj097

    Article  CAS  PubMed  Google Scholar 

  23. A. Rosari, J. Exp. Bot. 53, 2333 (2002). https://doi.org/10.1093/jxb/erf097

    Article  CAS  Google Scholar 

  24. R. Solano, A. Stepanova, Q. Chao, J.R. Ecker, Genes Dev. 12, 3703–3714 (1998). https://doi.org/10.1101/gad.12.23.3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Y. Zhang, Y. Huang, C. Wang, Q. Mu, S. Jiu, X. Zhu, T. Zheng, K. Zhang, H. Jia, T. Pervaiz, J. Fang, Plant. Genome 12, 180089 (2019). https://doi.org/10.3835/plantgenome2018.11.0089

    Article  CAS  Google Scholar 

  26. X. Wang, Y. Ding, Y. Wang, L. Pan, L. Niu, Z. Lu, G. Cui, W. Zeng, Z. Wang, Sci. Hortic. 224, 306–316 (2017). https://doi.org/10.1016/j.scienta.2017.06.035

    Article  CAS  Google Scholar 

  27. N.M. Win, J. Yoo, A.H. Naing, J.G. Kwon, I.K. Kang, Postharv Biol. Technol. 180, 111599 (2021). https://doi.org/10.1016/j.postharvbio.2021.111599

    Article  CAS  Google Scholar 

  28. J. Yoo, N.M. Win, H. Mang, Y.J. Cho, H.Y. Jung, I.K. Kang, Horticulturae 7, 338 (2021). https://doi.org/10.3390/horticulturae7100338

    Article  Google Scholar 

  29. A. Grobelna, S. Kalisz, M. Kieliszek, Biomolecules 9, 744 (2019). https://doi.org/10.3390/biom9110744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. N.M. Win, J. Yoo, S.I. Kwon, C.B. Watkins, I.K. Kang, Front. Plant. Sci. 10, 1513 (2019). https://doi.org/10.3389/fpls.2019.01513

    Article  PubMed  PubMed Central  Google Scholar 

  31. S. Chang, J. Puryear, J. Cairney, Plant Mol. Biol. 11, 113–116 (1993). https://doi.org/10.1007/BF02670468

    Article  CAS  Google Scholar 

  32. S. Babicki, D. Arndt, A. Marcu, Y. Liang, J.R. Grant, A. Maciejewski, D.S. Wishart, Nucleic Acids Res 44, W147–W153 (2016). https://doi.org/10.1093/nar/gkw419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. F. Toulza, K. Dominy, T. Cook, J. Galliford, J. Beadle, A. McLean, C. Roufosse, Sci. Rep. 10, 17909 (2020). https://doi.org/10.1038/s41598-020-74794-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S.R. Jaeger, L. Antúnez, G. Ares, Food Res. Int. 165, 112491 (2023). https://doi.org/10.1016/j.foodres.2023.112491

    Article  PubMed  Google Scholar 

  35. H. Hayama, M. Tatsuki, Y. Nakamura, Postharv. Biol. Technol. 50, 228–230 (2008). https://doi.org/10.1016/j.postharvbio.2008.05.003

    Article  CAS  Google Scholar 

  36. D.B. Lee, G.J. Lee, S.H. Kim, I.K. Kang, S.J. Choi, H.K. Yun, Hortic. Sci. Technol. 38, 32–43 (2020). https://doi.org/10.7235/HORT.20200004

    Article  CAS  Google Scholar 

  37. G. Tucker, X. Yin, A. Zhang, M. Wang, Q. Zhu, X. Liu, X. Xie, K. Chen, D. Grierson, Food Qual. Saf. 1, 253–267 (2017). https://doi.org/10.1093/fgsafe/fyx024

    Article  CAS  Google Scholar 

  38. B. Brückner, in Fruits and Vegetable Flavour, ed. by B. Brückner, S.G. Wyllie (Elsevier, Amsterdam, 2008), pp. 11–17. https://doi.org/10.1533/9781845694296.1.11

  39. B. Baccichet, R. Chiozzotto, D. Bassi, C. Gardana, M. Cirilli, A. Spinardi, Sci. Hortic. 278, 109865 (2021). https://doi.org/10.1016/j.scienta.2020.109865

    Article  CAS  Google Scholar 

  40. F.C. Doerflinger, W.B. Miller, J.F. Nock, C.B. Watkins, Hortic. Res. 2, 15047 (2015). https://doi.org/10.1038/hortres.2015.47

    Article  PubMed  PubMed Central  Google Scholar 

  41. M. Thanmmawong, O. Arakawa, J. Agric. Sci. Technol. 12, 617–626 (2010)

    Google Scholar 

  42. A. Brackmann, F.R. Thewes, R. de Olivieria Anese, V. Both, W.L. Junior, E.E. Schultz, Sci. Agric. 72, 221–228 (2015). https://doi.org/10.1590/0103-9016-2014-0099

    Article  Google Scholar 

  43. L. Kapoor, A.J. Simkin, C.G.P. Doss, R. Siva, BMC Plant Biol. 22, 27 (2022). https://doi.org/10.1186/s12870-021-03411-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Y. Cheng, Y. Dong, H. Yan, W. Ge, C. Shen, J. Guan, L. Liu, Y. Zhang, Food Chem. 135, 415–422 (2012). https://doi.org/10.1016/j.foodchem.2012.05.017

    Article  CAS  PubMed  Google Scholar 

  45. C. Soethe, C.A. Steffens, F.J. Hawerroth, M.A. Moreira, C.V.T. Amarante, M.C. Stanger, Appl. Food Res. 2, 100117 (2022). https://doi.org/10.1016/j.afres.2022.100117

    Article  CAS  Google Scholar 

  46. L. Alexander, D. Grierson, J. Exp. Bot. 53, 2039–2055 (2002). https://doi.org/10.1093/jxb/erf072

    Article  CAS  PubMed  Google Scholar 

  47. P. Muñoz-Robredo, P. Rubio, R. Infante, R. Campos-Vargas, D. Manríquez, M. González-Agüero, B.G. Defilippi, Postharv. Biol. Technol. 63, 85–90 (2012). https://doi.org/10.1016/j.postharvbio.2011.09.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Rural Development Administration, Republic of Korea (No. RS-2021-RD012586).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Kyu Kang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.Y., Kwon, JG., Lee, JY. et al. Aminoethoxyvinylglycine and 1-methylcyclopropene treatments affect fruit quality and ethylene production in ‘Geum Hwang’ peach. Food Measure 18, 1463–1472 (2024). https://doi.org/10.1007/s11694-023-02233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02233-8

Keywords

Navigation