Skip to main content
Log in

Development of an efficient electrochemical sensor based on MoS2 nanosheets and ionic liquid modified carbon paste electrode for determination of ascorbic acid in the presence of vitamin B6

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This work modified the carbon paste electrode (CPE) with MoS2 nanosheets and ionic liquid (IL), creating a simple and effective sensing platform. In contrast to oxidation at the bare CPE, which occurred at 518 mV (6.2 μA), the electro-oxidation of ascorbic acid at the MoS2-modified ILCPE occurred at 320 mV (20 μA). The MoS2/ILCPE also improved the rate of electrochemical reaction. When the concentration of ascorbic acid increased between 1.0 and 1000.0 μM, the peak current increased according to the differential pulse voltammetry (DPV) technique. The proposed MoS2/ILCPE sensor revealed a low limit of detection (LOD) of 0.2 μM and good sensitivity of 0.1011 μA μM− 1 for a wide range of concentrations of ascorbic acid from 1.0 to 1000.0 μM. A well-defined and distinct oxidation peak of ascorbic acid and vitamin B6 were found at 330 mV and 720 mV, respectively, according to the results of the analysis of ascorbic acid when vitamin B6 is present. Finally, in real-sample matrices, the proposed sensor showed a reasonable recovery of the spiked ascorbic acid and vitamin B6 (ascorbic acid injection, ascorbic acid tablet, vitamin B6 tablet, and urine samples).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Huang, S. Tian, W. Zhao, K. Liu, J. Guo, Electrochemical vitamin sensors: a critical review. Talanta. 222, 121645 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. A. Karbasfrushan, H. Karimiyarandi, Role of vitamin D on knee osteoarthritis pain: a systematic review. Eurasian Chem. Commun. 4(12), 1241–1250 (2022)

    CAS  Google Scholar 

  3. B. Brunetti, Recent advances in electroanalysis of vitamins. Electroanalysis. 28(9), 1930–1942 (2016)

    Article  CAS  Google Scholar 

  4. Y.R. Li, H. Zhu, Vitamin C for sepsis intervention: from redox biochemistry to clinical medicine. Mol. Cell. Biochem. 476, 4449–4460 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. Lykkesfeldt, On the effect of vitamin C intake on human health: how to (mis) interprete the clinical evidence. Redox boil. 34, 101532 (2020)

    Article  CAS  Google Scholar 

  6. Z. Taleat, M.M. Ardakani, H. Naeimi, H. Beitollahi, M. Nejati, H.R. Zare, Electrochemical behavior of ascorbic acid at a 2,2’-[3,6-dioxa-1,8-octanediylbis (nitriloethylidyne)]-bis-hydroquinone carbon paste electrode. Anal. Sci. 24(8), 1039–1044 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. S.P. Arya, M. Mahajan, P. Jain, Non-spectrophotometric methods for the determination of vitamin C. Anal. Chim. Acta. 417(1), 1–14 (2000)

    Article  CAS  Google Scholar 

  8. M. Doseděl, E. Jirkovský, K. Macáková, L.K. Krčmová, L. Javorská, J. Pourová, Vitamin C—Sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients. 13(2), 615 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  9. S.J. Devaki, R.L. Raveendran, Vitamin C: sources, functions, sensing and analysis. In Vitamin C. IntechOpen. (2017)

  10. H. Doll, S.U.S.A.N. Brown, A.M.A.N.D.A. Thurston, R. T. I. N. Vessey, pyridoxine (vitamin B6) and the premenstrual syndrome: a randomized crossover trial. The J. R Coll. Gen. Pract. 39(326), 364–368 (1989)

    CAS  PubMed  Google Scholar 

  11. W.G. Christen, R.J. Glynn, E.Y. Chew, C.M. Albert, J.E. Manson, Folic acid, vitamin B6, and vitamin B12 in combination and age-related macular degeneration in a randomized trial of women. Arch. Intern. Mmed. 169(4), 335 (2009)

    Article  CAS  Google Scholar 

  12. M.F. Teixeira, A. Segnini, F.C. Moraes, L.H. Marcolino-Júnior, O. Fatibello-Filho, Ã.T. Cavalheiro, Determination of vitamin B6 (pyridoxine) in pharmaceutical preparations by cyclic voltammetry at a copper (II) hexacyanoferrate (III) modified carbon paste electrode. J. Braz Chem. Soc. 14, 316–321 (2003)

    Article  CAS  Google Scholar 

  13. T.T. Calam, A novel, efficient and sensitive method for the simultaneous determination of riboflavin (vitamin B2) and pyridoxine hydrochloride (vitamin B6) in food and pharmacological samples using an electrochemical sensor based on 4, 4′-diamino benzophenone. Microchem J. 169, 106557 (2021)

    Article  Google Scholar 

  14. A. Spinneker, R. Sola, V. Lemmen, M.J. Castillo, K. Pietrzik, M. Gonzalez-Gross, Vitamin B6 status, deficiency and its consequences-an overview. Nutr. Hosp. 22(1), 7–24 (2007)

    CAS  PubMed  Google Scholar 

  15. H. Bakhsh, I.M. Palabiyik, R.K. Oad, N. Qambrani, J.A. Buledi, A.R. Solangi, Sherazi, SnO2 nanostructure based electroanalytical approach for simultaneous monitoring of vitamin C and vitamin B6 in pharmaceuticals. J. Electroanal. Chem. 910, 116181 (2022)

    Article  CAS  Google Scholar 

  16. L.S. Liau, B.L. Lee, A.L. New, C.N. Ong, Determination of plasma ascorbic acid by high-performance liquid chromatography with ultraviolet and electrochemical detection. J. Chromatogr. B: Biomed. Sci. Appl. 612(1), 63–70 (1993)

    Article  CAS  Google Scholar 

  17. N. Sui, F. Liu, T. Li, L. Wang, T. Wang, M. Liu, W.W. Yu, Colorimetric detection of ascorbic acid based on the trigger of gold nanoparticles aggregation by Cr (III) reduced from Cr (VI). Anal. Sci. 33(8), 963–967 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Dilgin, G. Nişli, Fluorimetric determination of ascorbic acid in vitamin C tablets using methylene blue. Chem. Pharm. Bull. 53(10), 1251–1254 (2005)

    Article  CAS  Google Scholar 

  19. M. Chiari, M. Nesi, G. Carrea, P.G. Righetti, Determination of total vitamin C in fruits by capillary zone electrophoresis. J. Chromatogr. A 645(1), 197–200 (1993)

    Article  CAS  Google Scholar 

  20. N. Gotoh, E. Niki, Rates of interactions of superoxide with vitamin E, vitamin C and related compounds as measured by chemiluminescence. Biochim. Biophys. Acta (BBA)-Gen Subj. 1115(3), 201–207 (1992)

    Article  CAS  Google Scholar 

  21. A. Hojjati-Najafabadi, M. Mansoorianfar, T.X. Liang, K. Shahin, H. Karimi-Maleh, A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Sci. Total Environ. 2022, 153844

  22. S. Cheraghi, M.A. Taher, H. Karimi-Maleh, F. Karimi, M. Shabani-Nooshabadi, M. Alizadeh, A. Al-Othman, N. Erk, P.K.Y. Raman, C. Karaman, Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere. 287, 132187 (2022)

    Article  CAS  PubMed  Google Scholar 

  23. Prog. Chem. Biochem. Res. 5(4), 351–366 (2022)

  24. M.M. Foroughi, H. Beitollahi, S. Tajik, A. Akbari, R. Hosseinzadeh, Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode. Int. J. Electrochem. Sci. 9, 8407 (2014)

    Article  Google Scholar 

  25. C.W. Foster, J. Pillay, J.P. Metters, C.E. Banks, Cobalt phthalocyanine modified electrodes utilised in electroanalysis: Nano-structured modified electrodes vs. bulk modified screen-printed electrodes. Sensors. 14(11), 21905–21922 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  26. J. Mohanraj, D. Durgalakshmi, R.A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh, Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 566, 463–472 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. F. Garkani Nejad, S. Tajik, H. Beitollahi, I. Sheikhshoaie, Magnetic nanomaterials based electrochemical (bio) sensors for food analysis. Talanta. 228, 122075 (2021)

    Article  CAS  PubMed  Google Scholar 

  28. J.B. Raoof, R. Ojani, H. Beitollahi, Electrocatalytic determination of ascorbic acid at chemically modified carbon paste electrode with 2, 7-bis (ferrocenyl ethynyl) fluoren-9-one. Int. J. Electrochem. Sci. 2, 534–548 (2007)

    Article  CAS  Google Scholar 

  29. P. Yomthiangthae, T. Kondo, O. Chailapakul, W. Siangproh, The effects of the supporting electrolyte on the simultaneous determination of vitamin B 2, vitamin B 6, and vitamin C using a modification-free screen-printed carbon electrode. New. J. Chem. 44(29), 12603–12612 (2020)

    Article  CAS  Google Scholar 

  30. A. Puangjan, S. Chaiyasith, W. Taweeporngitgul, J. Keawtep, Application of functionalized multi-walled carbon nanotubes supporting cuprous oxide and silver oxide composite catalyst on copper substrate for simultaneous detection of vitamin B2, vitamin B6 and ascorbic acid. Mater. Sci. Eng. C 76, 383–397 (2017)

    Article  CAS  Google Scholar 

  31. M.A. Al-Azzawi, W.R. Saleh, Fabrication of environmental monitoring amperometric biosensor based on alkaloids compound derived from catharanthus roseus extract nanoparticles for detection of cadmium pollution of water. Chem. Methodol. 7, 358–371 (2023)

    CAS  Google Scholar 

  32. S. Tajik, Y. Orooji, F. Karimi, Z. Ghazanfari, H. Beitollahi, M. Shokouhimehr, H.W. Jang, High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth. J. Food Meas. Charact. 15, 4617–4622 (2021)

    Article  Google Scholar 

  33. H. pyman, Design and fabrication of modified DNA-Gp Nano-Biocomposite Electrode for Industrial Dye Measurement and Optical confirmation. Prog Chem. Biochem. Res. 5(4), 391–405 (2022)

  34. Z. Mehdizadeh, S. Shahidi, A. Ghorbani-HasanSaraei, M. Limooei, M. Bijad, Monitoring of Amaranth in drinking samples using Voltammetric Amplified Electroanalytical Sensor. Chem. Methodol. 6(3), 246–252 (2022)

    CAS  Google Scholar 

  35. H. Karimi-Maleh, Y. Liu, Z. Li, R. Darabi, Y. Orooji, C. Karaman, F. Karimi, J. Rouhi, L. Fu, Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332, 138815 (2023)

  36. S.M. Mali, S.S. Narwade, Y.H. Navale, V.B. Patil, B.R. Sathe, Facile synthesis of highly porous CuO nanoplates (NPs) for ultrasensitive and highly selective nitrogen dioxide/nitrite sensing. RSC Adv. 9(10), 5742–5747 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. S.M. Mali, P.P. Chavan, Y.H. Navale, V.B. Patil, B.R. Sathe, Ultrasensitive and bifunctional ZnO nanoplates for an oxidative electrochemical and chemical sensor of NO 2: implications towards environmental monitoring of the nitrite reaction. RSC Adv. 8(20), 11177–11185 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Tajik, H. Beitollahi, F. Garkani Nejad, M. Safaei, P. Mohammadzadeh, Jahani, Electrochemical sensing of Sudan I using the modified graphite screen-printed electrode. Int. J. Environ. Anal. Chem. 102, 1477–1490 (2022)

    Article  CAS  Google Scholar 

  39. S. Esfandiari Baghbamidi, H. Beitollahi, S.Z. Mohammadi, S. Tajik, S. Soltani-Nejad, V. Soltani-Nejad, Nanostructure-based electrochemical sensor for the voltammetric determination of benserazide, uric acid, and folic acid. Chin. J Catal. 34, 1869–1875 (2013)

    Article  Google Scholar 

  40. H. Beitollahi, S. Tajik, H. Karimi-Maleh, R. Hosseinzadeh, Application of a 1-benzyl‐4‐ferrocenyl‐1H‐[1,2,3]‐triazole/carbon nanotube modified glassy carbon electrode for voltammetric determination of hydrazine in water samples. Appl. Organomet. Chem. 27, 444–450 (2013)

    Article  CAS  Google Scholar 

  41. M. Vardini, N. Abbasi, A. Kaviani, M. Ahmadi, E. Karimi, Graphite electrode potentiometric sensor modified by surface imprinted silica gel to measure valproic acid. Chem. Methodol. 6(5), 398–408 (2022)

    CAS  Google Scholar 

  42. Z. Zhang, H. Karimi-Maleh, Label-free electrochemical aptasensor based on gold nanoparticles/titanium carbide MXene for lead detection with its reduction peak as index signal. Adv. Compos. Hybrid. Mater. 6, 68 (2023)

    Article  CAS  Google Scholar 

  43. A.I. Arif, Biosynthesis of copper oxide nanoparticles using aspergillus Niger extract and their antibacterial and antioxidant activities. Eurasian Chem. Commun. 5, 598–608 (2023)

    CAS  Google Scholar 

  44. S. Tajik, H. Beitollahi, H.W. Jang, M. Shokouhimehr, A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine. Talanta. 232, 122379 (2021)

    Article  CAS  PubMed  Google Scholar 

  45. L. Qian, S. Durairaj, S. Prins, A. Chen, Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron. 175, 112836 (2021)

    Article  CAS  PubMed  Google Scholar 

  46. Z. Zhang, H. Karimi-Maleh, In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere. 324, 138302 (2023)

    Article  CAS  PubMed  Google Scholar 

  47. S. Ariavand, M. Ebrahimi, E. Foladi, Design and construction of a novel and an efficient potentiometric sensor for determination of sodium ion in urban water samples. Chem. Methodol. 6(11), 886–904 (2022)

    CAS  Google Scholar 

  48. H. Roshanfekr, A simple specific dopamine Aptasensor based on partially reduced Graphene Oxide–AuNPs composite. Prog Chem. Biochem. Res. 6(1), 79–88 (2023)

    CAS  Google Scholar 

  49. H. Beitollahi, F. Garkani Nejad, Z. Dourandish, S. Tajik, A novel voltammetric amaranth sensor based on screen printed electrode modified with polypyrrole nanotubes. Environ. Res. 214, 113725 (2022)

    Article  CAS  PubMed  Google Scholar 

  50. S.E. Mousavi Ghahfarokhi, K. Helfi, M. Zargar, Shoushtari, Synthesis of the single-phase Bismuth Ferrite (BiFeO3) nanoparticle and investigation of their structural, magnetic, Optical and Photocatalytic Properties. Adv. J. Chem. A 5(1), 45–58 (2022)

    Google Scholar 

  51. J.A. Buledi, N. Mahar, A. Mallah, A.R. Solangi, I.M. Palabiyik, N. Qambrani, F. Karimi, Y. Vasseghian, Karimi-Maleh, Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: a potential method for environmental remediation. Food Chem. Toxicol. 161, 112843 (2022)

    Article  CAS  PubMed  Google Scholar 

  52. S.M. Chandankar, P.P. Nerkar, H.S. Mahajan, Fundamental features of quantum dots and their diagnostic applications. Asian J. Nanosci. Mater. 5(1), 48–62 (2022)

    CAS  Google Scholar 

  53. X. Lin, Y. Ni, S. Kokot, Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sens. Actuators B: Chem. 233, 100–106 (2016)

    Article  CAS  Google Scholar 

  54. A. Sinha, B. Tan, Y. Huang, H. Zhao, X. Dang, J. Chen, R. Jain, MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review. TrAC Trends Anal. Chem. 102, 75–90 (2018)

    Article  CAS  Google Scholar 

  55. J. Theerthagiri, R.A. Senthil, B. Senthilkumar, A.R. Polu, J. Madhavan, M. Ashokkumar, Recent advances in MoS2 nanostructured materials for energy and environmental applications–a review. J. Solid State Chem. 252, 43–71 (2017)

    Article  CAS  Google Scholar 

  56. S. Barua, H.S. Dutta, S. Gogoi, R. Devi, R. Khan, Nanostructured MoS2-based advanced biosensors: a review. ACS Appl. Nano Mater. 1(1), 2–25 (2017)

    Article  Google Scholar 

  57. H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci. 554, 603–610 (2019)

    Article  CAS  PubMed  Google Scholar 

  58. M. Opallo, A. Lesniewski, A review on electrodes modified with ionic liquids. J. Electroanal. Chem. 656, 2–16 (2011)

    Article  CAS  Google Scholar 

  59. Y. Zhao, Y. Gao, D. Zhan, H. Liu, Q. Zhao, Y. Kou, Z. Zhu, Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta. 66(1), 51–57 (2005)

    Article  CAS  PubMed  Google Scholar 

  60. M. Bijad, H. Karimi-Maleh, M. Farsi, S.A. Shahidi, An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact. 12, 634–640 (2018)

    Article  Google Scholar 

  61. S. Tajik, Z. Dourandish, F. Garkani Nejad, A. Aghaei Afshar, H. Beitollahi, Voltammetric determination of isoniazid in the presence of acetaminophen utilizing MoS2-nanosheet-modified screen-printed electrode. Micromachines. 13, 369 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Beitollahi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani-Nejad, H., Nejad, F.G. & Beitollahi, H. Development of an efficient electrochemical sensor based on MoS2 nanosheets and ionic liquid modified carbon paste electrode for determination of ascorbic acid in the presence of vitamin B6. Food Measure 18, 1318–1327 (2024). https://doi.org/10.1007/s11694-023-02216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02216-9

Keywords

Navigation