Skip to main content
Log in

Supersensitive detection of auramine O in food and drug samples by using carbon dots as sensing reagents

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This work present a highly sensitive fluorescence method for auramine O (AO) detection in food and drug samples based on carbon nanodots (CDs). The AO can effectively diminish the emission of CDs based on an integrated quenching mechanism of inner filter effect (IFE) and dynamic reaction. The CDs were prepared via a one-step hydrothermal method with citric acid and o-phenylenediamine as precursors. The good selectivity and high sensitivity feature of the proposed method for AO detection were validated. The fluorescence signals were linearly correlated with AO concentration over a range of 0.01‒10.0 µM with a detection limit of 36.3 nM was obtained. The proposed method was finally used for AO determination in traditional Chinese medicine, curry power, bean curb and candy samples with high accuracy. The recoveries ranged from 95.5 to 107.2% and relative standard deviations (RSDs) were less than 3.39%. This work provided a new insight and an operational access to AO detection in food and drug colorants monitoring. Thus, the CDs-based sensor demonstrated feasibility of rapid AO detection considering its appealing simplicity, rapidity and high sensitivity features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Dixit, S.K. Khanna, M. Das, A simple method for simultaneous determination of basic dyes encountered in food preparations by reversed-phase hplc. J. AOAC Int. 94, 1874–1881 (2011). https://doi.org/10.5740/jaoacint.10-450

    Article  CAS  PubMed  Google Scholar 

  2. J. Li, X.M. Ding, D.D. Liu, F. Guo, Y. Chen, Y.B. Zhang, H.M. Liu, Simultaneous determination of eight illegal dyes in chili products by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 942–943, 46–52 (2013). https://doi.org/10.1016/j.jchromb.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  3. T. Tabanligil Calam, G. Taskin, Cakici, Optimization of square wave voltammetry parameters by response surface methodology for the determination of sunset yellow using an electrochemical sensor based on purpald(r). Food Chem. 404, 134412 (2022). https://doi.org/10.1016/j.foodchem.2022.134412

    Article  CAS  PubMed  Google Scholar 

  4. S. Parodi, L. Santi, P. Russo, A. Albini, D. Vecchio, M. Pala, L. Ottaggio, A. Carbone, DNA damage induced by auramine o in liver, kidney, and bone marrow of rats and mice, and in a human cell line (alkaline elution assay and sce induction). Toxicol. Environ. Health Sci. 9, 941–952 (1982). https://doi.org/10.1080/15287398209530216

    Article  CAS  Google Scholar 

  5. C.C. de Jesus Azevedo, R. de Oliveira, P. Suares-Rocha, D. Sousa-Moura, A.T. Li, C.K. Grisolia, G. de Aragao, C.C. Umbuzeiro, Montagner, Auramine dyes induce toxic effects to aquatic organisms from different trophic levels: an application of predicted non-effect concentration (pnec). Environ. Sci. Pollut Res. Int. 28, 1866–1877 (2021). https://doi.org/10.1007/s11356-020-10462-3

    Article  CAS  PubMed  Google Scholar 

  6. J.C. Tung, W.C. Huang, J.C. Yang, G.Y. Chen, C.C. Fan, Y.C. Chien, P.S. Lin, S.C. Candice Lung, W.C. Chang, Auramine o, an incense smoke ingredient, promotes lung cancer malignancy. Environ. Toxicol. 32, 2379–2391 (2017). https://doi.org/10.1002/tox.22451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. I. A. F. R. O. J. B. J. o. C. Some aromatic amines and related nitro compounds-hair dyes, colouring agents and miscellaneous industrial chemicals. J. Med. Entomol. 39, 209–210 (1978). doi: 978–92–832–1216–4.

  8. T. Nguyen Thi Kim, T.T. Bui, A.T. Pham, V.T. Duong, T.H.G. Le, Fast determination of auramine o in food by adsorptive stripping voltammetry. J Anal Methods Chem 2019, 8639528 (2019). doi:https://doi.org/10.1155/2019/8639528

  9. A. Martelli, G.B. Campart, R. Canonero, R. Carrozzino, F. Mattioli, L. Robbiano, M.J.M.R.G.T. Cavanna, E. Mutagenesis, Evaluation of auramine genotoxicity in primary rat and human hepatocytes and in the intact rat. MUTAT. RES-GEN TOX EN. 414, 37–47 (1998). https://doi.org/10.1016/s1383-5718(98)00037-0

    Article  CAS  Google Scholar 

  10. L. Gagliardi, D.D. Orsi, G. Cavazzutti, G. Multari, D.J.C. Tonelli, Hplc determination of rhodamine b (c.I. 45170) in cosmetic products. Chromatographia. 43, 76–78 (1996). https://doi.org/10.1007/BF02272825

    Article  CAS  Google Scholar 

  11. C. Tatebe, X. Zhong, T. Ohtsuki, H. Kubota, K. Sato, H. Akiyama, A simple and rapid chromatographic method to determine unauthorized basic colorants (rhodamine b, auramine o, and pararosaniline) in processed foods. Food Sci. Nutr. 2, 547–556 (2014). https://doi.org/10.1002/fsn3.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D.T.N. Hoa, T.T.T. Toan, T.X. Mau, N.T.V. Hoan, T.T.N. Tram, T.D. Manh, V.T. Nguyen, V.T. Duyen, P.L.M. Thong, D.Q. Khieu, Voltammetric determination of auramine o with zif-67/fe2o3/g-c3n4-modified electrode. J. MATER. SCI. 31, 19741–19755 (2020). https://doi.org/10.1007/s10854-020-04499-w

    Article  CAS  Google Scholar 

  13. C. Zhao, W. Rao, L.J.C.J. o., P.A. Mo, Hplc determination of auramine o added in pollen typhae. J. Pharm. Anal. 27, 1956–1958 (2007). https://doi.org/10.16155/j.0254-1793.2007.12.020

    Article  CAS  Google Scholar 

  14. T.K. Thuong Nguyen, T.H. Giang Le, V.T. Duong, T.A.J.A. Pham, B. ELECTROCHEMISTRY, Electrochemical study of auramine o at glassy carbon electrode and its determination in food by differential pulse adsorptive stripping voltammetry. Anal. Bioanal Electrochem. 11, 000466569300006 (2019)

    Google Scholar 

  15. T.T. Tran-Lam, M.B.T. Hong, G.T. Le, P.D. Luu, Auramine o in foods and spices determined by an uplc-ms/ms method. Food Addit. Contam. Part. B 13, 171–176 (2020). https://doi.org/10.1080/19393210.2020.1742208

    Article  CAS  Google Scholar 

  16. R.F. Straub, R.D. Voyksner, J.T.J.A.C. Keever, Determination of aromatic amines originating from azo dyes by hydrogen-palladium reduction combined with gas chromatography/mass spectrometry. Anal. Chem. 65, 2131–2136 (1993). https://doi.org/10.1021/ac00063a034

    Article  CAS  Google Scholar 

  17. M.S. Narvekar, A.K.J.C. Srivastava, Separation of banned amine isomers in relation to german ban on azo dyes by derivatization on gc-ms. Chromatographia. 55, 729–735 (2002). https://doi.org/10.1007/BF02491789

    Article  CAS  Google Scholar 

  18. H. Zhai, L.I. Jiangmeia, Z. Chen, Q. Zhou, J. o. A. C. Pan, Rapid determination of auramine o in yellow croaker by microchip capillary electrophoresis. Chin. J. Appl. Chem. 30, 481 (2013). https://doi.org/10.3724/SP.J.1095.2013.20273

    Article  CAS  Google Scholar 

  19. J. Li, H. Zhai, Z. Chen, Q. Zhou, Z. Liu, Z. Su, Preparation and evaluation of a novel molecularly imprinted spe monolithic capillary column for the determination of auramine o in shrimp. J. Sep. Sci. 36, 3608–3614 (2013). https://doi.org/10.1002/jssc.201300681

    Article  CAS  PubMed  Google Scholar 

  20. W. Zhang, H. Qin, Z. Liu, H. Du, H. Li, L. Fang, Z.J.A.L. Chen, Quantitative determination of auramine o in bean curd sheets by dispersive solid phase extraction with dynamic surfaced-enhanced raman spectroscopy. Anal. Lett. 53, 8 (2020). https://doi.org/10.1080/00032719.2019.1702669

    Article  CAS  Google Scholar 

  21. D. Guner, B.B. Sener, C. Bayrac, Label free detection of auramine o by g-quadruplex-based fluorescent turn-on strategy. Spectrochim Acta A Mol Biomol Spectrosc. 267, 120532 (2022). https://doi.org/10.1016/j.saa.2021.120532

    Article  CAS  PubMed  Google Scholar 

  22. J. Yan, X. Huang, S. Liu, J. Yang, Y. Yuan, R. Duan, H. Zhang, X. Hu, A simple and sensitive method for auramine o detection based on the binding interaction with bovin serum albumin. Anal. Sci. 32, 819–824 (2016). https://doi.org/10.2116/analsci.32.819

    Article  CAS  PubMed  Google Scholar 

  23. S. Han, Y. Wu, L. Yan, X.J.A.M. Chen, Determination of auramine o based on a carbon dot-enhanced chemiluminescence method. ANAL. METHODS. 8, 45 (2016). https://doi.org/10.1039/C6AY02572B

    Article  CAS  Google Scholar 

  24. J.-H. Zhu, M.-M. Li, S.-P. Liu, Z.-F. Liu, Y.-F. Li, X.-L. Hu, Fluorescent carbon dots for auramine o determination and logic gate operation. Sens. Actuators B Chem. 219, 261–267 (2015). https://doi.org/10.1016/j.snb.2015.05.032

    Article  CAS  Google Scholar 

  25. D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of Instrumental Analysis, 7 edn. (th Ed. (Brooks/Cole, 2017), pp. 361–362

  26. L. Ðorđević, F. Arcudi, M. Cacioppo, M. Prato, A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17, 112–130 (2022). https://doi.org/10.1038/s41565-021-01051-7

    Article  CAS  PubMed  Google Scholar 

  27. D. Sun, R. Ban, P.H. Zhang, G.H. Wu, J.R. Zhang, J.J.J.C. Zhu, Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. RSC Adv. 64, 424–434 (2013). https://doi.org/10.1016/j.carbon.2013.07.095

    Article  CAS  Google Scholar 

  28. L. Liu, H. Sun, L. Xiao, Z.Q. Yang, Q.J.A. Hu, B. Chemistry, Development of a highly sensitive fluorescence method for tartrazine determination in food matrices based on carbon dots. ANAL. BIOANAL CHEM. 413, 1485–1492 (2021). https://doi.org/10.1007/s00216-020-03118-1

    Article  CAS  PubMed  Google Scholar 

  29. K. Hola, Y. Zhang, Y. Wang, E.P. Giannelis, R. Zboril, A.L.J.N.T. Rogach, Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. ACS Appl. Nano Mater. 9, 590–603 (2014). https://doi.org/10.1016/j.nantod.2014.09.004

    Article  CAS  Google Scholar 

  30. V. Sharma, P. Tiwari, S.M.J.J. o., M.C.B. Mobin, Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 45, 8904–8924 (2017). https://doi.org/10.1039/C7TB02484C

    Article  Google Scholar 

  31. J. Xu, Y. Zhou, G. Cheng, M. Dong, S. Liu, C.J.L. Huang, Carbon dots as a luminescence sensor for ultrasensitive detection of phosphate and their bioimaging properties. J. LUMIN. 30, 411–415 (2015). https://doi.org/10.1002/bio.2752

    Article  CAS  Google Scholar 

  32. H. Ali, S. Ghosh, N.R. J. W. I., R.N. Jana, Nanobiotechnology, fluorescent carbon dots as intracellular imaging probes. J. NANOBIOTECHNOL. 12, 1617 (2020). https://doi.org/10.1002/wnan.1617

    Article  CAS  Google Scholar 

  33. H.J. Yu, R. Shi, Y.F. Zhao, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454–9477 (2016). https://doi.org/10.1002/adma.201602581

    Article  CAS  PubMed  Google Scholar 

  34. A. Im, B. Sp, C. Mb, D. Sd, E. Ms, F. As, B.J.C.P.L. Tg, Effects of carbon quantum dots (cqd) on the energy storage capacity of a novel synthesized short-chain dyad. Chem. Phys Lett. 726, 1–6 (2019). https://doi.org/10.1016/j.cplett.2019.04.025

    Article  CAS  Google Scholar 

  35. J. Gao, Q. Li, C. Wang, H. Tan, Copper (ii)-mediated fluorescence of lanthanide coordination polymers doped with carbon dots for ratiometric detection of hydrogen sulfide. Sens. Actuators B Chem. 253, 27–33 (2017). https://doi.org/10.1016/j.snb.2017.06.092

    Article  CAS  Google Scholar 

  36. J. Wang, D. Li, Y. Qiu, X. Liu, J.J.T. Hu, An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta. 220, 121377 (2020). https://doi.org/10.1016/j.talanta.2020.121377

    Article  CAS  PubMed  Google Scholar 

  37. J. Qian, K. Wang, C. Wang, C. Ren, Q. Liu, N. Hao, K. Wang, Ratiometric fluorescence nanosensor for selective and visual detection of cadmium ions using quencher displacement-induced fluorescence recovery of cdte quantum dots-based hybrid probe. Sens. Actuators B Chem. 241, 1153–1160 (2017). https://doi.org/10.1016/j.snb.2016.10.020

    Article  CAS  Google Scholar 

  38. A. Hrha, B. Aih, B. Yfh, A.J.F.C. Ew, Colorimetric and fluorometric nanoprobe for selective and sensitive recognition of hazardous colorant indigo carmine in beverages based on ion pairing with nitrogen doped carbon dots. Sens. Actuators B Chem. 241, 1153–1160 (2017). https://doi.org/10.1016/j.snb.2016.10.020

    Article  CAS  Google Scholar 

  39. Q. Hu, Y. Cui, L. Zhang, M. Qian, J.J.J. o., F.C. Han, Analysis, an ultrasensitive analytical strategy for malachite green determination in fish samples based on bright orange-emissive carbon dots. J. Food Compost Anal. 102, 104032 (2021). https://doi.org/10.1016/j.jfca.2021.104032

    Article  CAS  Google Scholar 

  40. Q. Hu, H. Sun, L. Liu, L. Xiao, Z.Q. Yang, S. Rao, X. Gong, J. Han, Development of an ultrasensitive spectrophotometric method for carmine determination based on fluorescent carbon dots. Food Addit. Contam. Part. A Chem. Anal. Control Expo Risk Assess. 38, 731–740 (2021). https://doi.org/10.1080/19440049.2021.1889045

    Article  CAS  PubMed  Google Scholar 

  41. Q. Hu, W. Sun, L. Xiao, Z.-. Yang, M. Yang, X. Gong, J. Han, Ultrasensitive determination of allura red in food samples based on green-emissive carbon nanodots. J. FOOD MEAS. CHARACT. 16, 4716–4727 (2022). https://doi.org/10.1007/s11694-022-01564-2

    Article  Google Scholar 

  42. Y. Zhang, Y. Sun, Z. Yang, S. Jin, L. Gao, L. He, X. Jiang, A simple one-step transferred sample preparation for effective purification and extraction of auramine o in bean product by combining air-assisted ionic liquid-based dispersive liquid-liquid microextraction. Microchem. J. 159 (2020). https://doi.org/10.1016/j.microc.2020.105571

  43. P. Anilkumar, X. Wang, L. Cao, S. Sahu, Y.P.J.N. Sun, Toward quantitatively fluorescent carbon-based “quantum’’ dots. Nanoscale. 3, 2023–2027 (2011). https://doi.org/10.1039/C0NR00962H

    Article  CAS  PubMed  Google Scholar 

  44. J.E. Abraham, M. Balachandran, Fluorescent mechanism in zero-dimensional carbon nanomaterials: a review. J. Fluoresc. 32, 887–906 (2022). https://doi.org/10.1007/s10895-022-02915?4

    Article  PubMed  Google Scholar 

  45. Q. Hu, H. Sun, X. Zhou, X. Gong, L. Xiao, L. Liu, Z.Q. Yang, Bright-yellow-emissive nitrogen-doped carbon nanodots as a fluorescent nanoprobe for the straightforward detection of glutathione in food samples. Food Chem. 325, 126946 (2020). https://doi.org/10.1016/j.foodchem.2020.126946

    Article  CAS  PubMed  Google Scholar 

  46. Y. Chen, H. Lian, Y. Wei, X. He, Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale. 10, 6734–6743 (2018). https://doi.org/10.1039/c8nr00204e

    Article  CAS  PubMed  Google Scholar 

  47. M. Syrjanpaa, E. Vuorinen, S. Kulmala, Q. Wang, H. Harma, K. Kopra, Qtr-fret: efficient background reduction technology in time-resolved forster resonance energy transfer assays. Anal. Chim. Acta. 1092, 93–101 (2019). https://doi.org/10.1016/j.aca.2019.09.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial supports from Natural Science Foundation of Jiangsu Province, China (BK20200949), China Postdoctoral Science Foundation (2020M671625), Postdoctoral Research Funding Program of Jiangsu Province (2021K249B), National Natural Science Foundation of China (21922202), Natural Science Fund for Colleges and Universities in Jiangsu Province, China (19KJB150042) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

W.W., Q.H., Z.Y. and L.X. designed the experiments and wrote the manuscript. X.G. and T. G. helped design the characterisation work. W.W., Q.H., and L.X. performed the experiments. W.W. and Q.H. analysed data.

Corresponding author

Correspondence to Qin Hu.

Ethics declarations

The authors declare that there is no conflict of interest in their work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yang, Zq., Xiao, L. et al. Supersensitive detection of auramine O in food and drug samples by using carbon dots as sensing reagents. Food Measure 17, 5360–5370 (2023). https://doi.org/10.1007/s11694-023-02057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02057-6

Keywords

Navigation