Skip to main content

Advertisement

Log in

Cannabis sativa leaf essential oil fractions and bioactive compounds: chemistry, functionality and health-enhancing traits

  • Original Research
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Cannabis sativa leaf essential oil (CSEO) and fractions (CSF) were investigated for their fungicidal, bactericidal, antioxidant, and cytotoxic traits. The extraction of CSEO was performed at 110 °C, 120 °C, and 130 °C through a hydrodistillation technique. A maximum extraction yield (0.035%) was obtained at 110 °C. Caryophyllene, humulene, trans-α-bergamotene, and cis-β-farnesene were the main components identified using GC–MS. The fractionation of CSEO was carried out using vacuum fractionation. Total phenolic contents (TPC) were 13.4–13.8 and 11.2–14.6 mg GAE/mL, total flavonoid contents were 14.1–14.2 and 10.7–15.3 mg CE/mL, and pro-anthocyanidin contents were 8.91–10.4 and 7.16–11.3 mg VE/mL for CSEO and CSF, respectively. Antioxidant activity assessed by scavenging DPPH· recorded 20.5–26.2% for CSEO and a maximum of 37.7% for F1 of 110 °C extracted CSEO. F4 of 130 °C extracted CSEO showed maximum inhibition of linoleic acid peroxidation. The maximum antibacterial effect was 19.3 mm, 19.6 mm, and 19.8 mm (zone of inhibition), while maximum antifungal activity was 20.1 mm, 22.1 mm, and 22.2 mm exhibited by F1, F5, and F4 for 110 °C, 120 °C, and 130 °C-extracted CSEO, respectively. Maximum brine shrimp cytotoxicity values were 20 ppm, and 25 ppm showed by F1 of CSEO collected at 110 °C. The IC50 of antitumor potential was 40.2 μL/mL for F4 of 130 °C extracted CSEO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during the current study are made available by the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. H. Celik, K. İlhan, Antioxidant effective aromatic compounds. Life in extreme environments-diversity, adaptability and valuable resources of bioactive molecules (2023)

  2. N. Puvača, Bioactive compounds in dietary spices and medicinal plants. J. Agron. Technol. Eng. Manag 5, 704–711 (2022)

    Article  Google Scholar 

  3. L. Zhang et al., Potential of aromatic plant-derived essential oils for the control of foodborne bacteria and antibiotic resistance in animal production: a review. Antibiotics 11(11), 1673 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D. Singh et al., Prospecting potential of endophytes for modulation of biosynthesis of therapeutic bioactive secondary metabolites and plant growth promotion of medicinal and aromatic plants. Antonie Van Leeuwenhoek 115(6), 699–730 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. A. Nargis, Effect of Chlormequat Chloride on the Growth, Biochemical Attributes and Essential Oil Yields in Lemongrass (2022)

  6. S.G.H. Tang, et al., Mini review: chemical compositions and bioactivity of essential oils. J. Energy Environ. (2022)

  7. A.S. Uddin Mahamud et al., Insights into antibiofilm mechanisms of phytochemicals: prospects in the food industry. Crit. Rev. Food Sci. Nutr. (2022). https://doi.org/10.1080/10408398.2022.2119201

    Article  PubMed  Google Scholar 

  8. E. Teshome et al., Potentials of natural preservatives to enhance food safety and shelf life: a review. Sci. World J. (2022). https://doi.org/10.1155/2022/9901018

    Article  Google Scholar 

  9. T. Wu et al., Advances in the formation and control methods of undesirable flavors in fish. Foods 11(16), 2504 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V. Rull, Origin, early expansion, domestication and anthropogenic diffusion of Cannabis, with emphasis on Europe and the Iberian Peninsula. Perspect. Plant Ecol. Evol. Syst. 55, 125670 (2022)

    Article  Google Scholar 

  11. J. Xu et al., Hemp (Cannabis sativa subsp. sativa) chemical composition and the application of hempseeds in food formulations. Plant Foods Hum. Nutr. 77(4), 504–513 (2022)

    Article  CAS  PubMed  Google Scholar 

  12. D.C. Simiyu, J.H. Jang, O.R. Lee, Understanding Cannabis sativa L.: current status of propagation, use, legalization, and haploid-inducer-mediated genetic engineering. Plants 11(9), 1236 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Jongrungraungchok et al., In vitro antioxidant, anti-inflammatory, and anticancer activities of mixture Thai medicinal plants. BMC Complement. Med. Ther. 23(1), 43 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P.K. Perera, J.I.D. Diddeniya, In-vitro and in-vivo supportive research on medicinal properties of Cannabis sativa: a comprehensive review. (2022)

  15. S.S. Hamdani, B.A. Bhat, S. Nissar, Ethnobotanical study of medicinal plants of Kashmir Valley, India having anticancer properties. Int. J. Res. Appl. Sci. Biotechnol. 7(4), 84–91 (2020)

    Article  Google Scholar 

  16. J.S. Mani et al., Antioxidative and therapeutic potential of selected Australian plants: a review. J. Ethnopharmacol. 268, 113580 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. S.H. Sweilam et al., Phytochemical, antimicrobial, antioxidant, and in vitro cytotoxicity evaluation of Echinops erinaceus Kit Tan. Separations 9(12), 447 (2022)

    Article  CAS  Google Scholar 

  18. V. Bhosale, et al., Historical background of Cannabis sativa: a review. (2021)

  19. X. Peng et al., Recent advances of kinetic model in the separation of essential oils by microwave-assisted hydrodistillation. Ind. Crops Prod. 187, 115418 (2022)

    Article  CAS  Google Scholar 

  20. V. Leppänen, Purification and repossession of methanol in a polymer synthesis process by fractional distilling. (2021)

  21. A. Taghipour, Fractional Distillation of Hydrothermal Liquefaction Biocrude (Queensland University of Technology, Brisbane, 2021)

    Book  Google Scholar 

  22. C.M. Ambrosio et al., Chemical composition and antibacterial and antioxidant activity of a citrus essential oil and its fractions. Molecules 26(10), 2888 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A.R. Abubakar, M. Haque, Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 12(1), 1 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. E.G. Vilar et al., Volatile organic compounds in beef and pork by gas chromatography–mass spectrometry: a review. Sep. Sci. Plus 5(9), 482–512 (2022)

    Article  CAS  Google Scholar 

  25. E. Kostanda, S. Khatib, Biotic stress caused by Tetranychus urticae mites elevates the quantity of secondary metabolites, cannabinoids and terpenes, in Cannabis sativa L. Ind. Crops Prod. 176, 114331 (2022)

    Article  CAS  Google Scholar 

  26. X. Chen et al., Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: a review. J. Chromatogr. A 1640, 461961 (2021)

    Article  CAS  PubMed  Google Scholar 

  27. B. Mwamatope et al., Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Sci. Afr. 9, e00481 (2020)

    Google Scholar 

  28. Z. Naseem et al., Green extraction of ethnomedicinal compounds from Cymbopogon citratus Stapf using hydrogen-bonded supramolecular network. Sep. Sci. Technol. 56(9), 1520–1533 (2021)

    Article  CAS  Google Scholar 

  29. F. Anjum et al., Evaluation of antioxidant potential and cytotoxic behavior of different varieties of Allium sativum. Pol. J. Environ. Stud. 29(6), 4447 (2020)

    Article  CAS  Google Scholar 

  30. W. Ahmed et al., The analysis of new higher operative bioactive compounds and chemical functional group from herbal plants through UF-HPLC-DAD and Fourier transform infrared spectroscopy methods and their biological activity with antioxidant potential process as future green chemical assay. Arab. J. Chem. 14(2), 102935 (2021)

    Article  CAS  Google Scholar 

  31. A. Ali et al., Chemical composition and in vitro evaluation of cytotoxicity, antioxidant and antimicrobial activities of essential oil extracted from Myristica fragrans Houtt. Pol. J. Environ. Stud. 30(2), 1585–90 (2021)

    Article  Google Scholar 

  32. P. Panapitiya, M. Weerasooriya, T. Punchipatabendhi, Antioxidant capacity and nutritional value of peels and seeds of selected pomegranate (Punica granatum L.) cultivars from Sri Lanka. J. Agric. Sci. Sri Lanka 17(3), 379 (2022)

    Google Scholar 

  33. A. Rajaei et al., Antioxidant, antimicrobial, and cytotoxic activities of extracts from the seed and pulp of Jujube (Ziziphus jujuba) grown in Iran. Food Sci. Nutr. 9(2), 682–691 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. S. Iqbal, M. Bhanger, F. Anwar, Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem. 93(2), 265–272 (2005)

    Article  CAS  Google Scholar 

  35. C. Barriere et al., Roles of superoxide dismutase and catalase of Staphylococcus xylosus in the inhibition of linoleic acid oxidation. FEMS Microbiol. Lett. 201(2), 181–185 (2001)

    Article  CAS  PubMed  Google Scholar 

  36. S.O. Okoh et al., Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from Abrus precatorius (L). Antioxidants 3(2), 278–287 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  37. S. Baliyan et al., Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 27(4), 1326 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Oyaizu, Studies on products of browning reaction—antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku zasshi (1986). https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  Google Scholar 

  39. İ Gülçin, Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217(2), 213–220 (2006)

    Article  PubMed  Google Scholar 

  40. N. Matvieieva et al., Flavonoid content and antioxidant activity of Artemisia vulgaris L. “hairy” roots. Prep. Biochem. Biotechnol. 49(1), 82–87 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. İ Gülçin, Antioxidant and antiradical activities of l-carnitine. Life Sci. 78(8), 803–811 (2006)

    Article  PubMed  Google Scholar 

  42. S. Aryal et al., Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8(4), 96 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. Jianu et al., Antioxidant activity of Pastinaca sativa L. ssp. sylvestris [Mill.] Rouy and Camus essential oil. Molecules 25(4), 869 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S.R. Shahhoseini, R. Safari, S.R. Javadian, Evaluation antioxidant effects of Pullulan edible coating with watercress extract (Nasturtiumn officinale) on the chemical corruption of fresh beluga sturgeon fillet during storage in a refrigerator. ISFJ 30(2), 133–146 (2021)

    Google Scholar 

  45. Clinical Laboratory Standards Institute, Performance standards for antimicrobial susceptibility testing: seventh informational supplement M100-S17. CLSI, Wayne, Pennsylvania, USA (2007)

  46. H.A. Hemeg et al., Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J. Biol. Sci. 27(12), 3221–3227 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. K. Pobiega et al., Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J. Food Sci. Technol. 56(12), 5386–5395 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. A. Hussain et al., Investigating the antibacterial activity of POMA nanocomposites. Pol. J. Environ. Stud. 28(6), 4191–4198 (2019)

    Article  CAS  Google Scholar 

  49. National Committee for Clinical Laboratory Standards (NCCLS), Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria: approved standard M31-A2. NCCLS, Wayne (2004)

  50. S. Naz, S. Manzoor, Phenolic profiling and antimicrobial studies of Fagonia crefica native to Pakistan. J. Adv. Nutr. Sci. Technol. 1, 19–32 (2021)

    Article  Google Scholar 

  51. A. Liaqat et al., Characterization and antimicrobial potential of bioactive components of sonicated extract from garlic (Allium sativum) against foodborne pathogens. J. Food Process. Preserv. 43(5), e13936 (2019)

    Article  Google Scholar 

  52. M. Shahid et al., Biofilm inhibition and antibacterial potential of different varieties of garlic (Allium sativum) against sinusitis isolates. Dose-Response 19(4), 15593258211050492 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. V. Suryawanshi et al., Toxicological assessment using brine shrimp lethality assay and antimicrobial activity of Capparis grandis. J. Univ. Shanghai Sci. Technol. 22(11), 746–759 (2020)

    Google Scholar 

  54. S. Silaban et al., Antibacterial activities test and brine shrimp lethality test of Simargaolgaol (Aglaonema modestum Schott ex Engl.) leaves from North Sumatera, Indonesia. Rasayan J. Chem. 15(02), 745–750 (2022)

    Article  CAS  Google Scholar 

  55. J.K. Achakzai et al., In vitro anticancer MCF-7, anti-inflammatory, and brine shrimp lethality assay (BSLA) and GC–MS analysis of whole plant butanol fraction of Rheum ribes (WBFRR). BioMed Res. Int. (2019). https://doi.org/10.1155/2019/3264846

    Article  PubMed  PubMed Central  Google Scholar 

  56. M.H. Mahnashi et al., Cytotoxicity, anti-angiogenic, anti-tumor and molecular docking studies on phytochemicals isolated from Polygonum hydropiper L. BMC Complement. Med. Ther. 21, 1–14 (2021)

    Article  Google Scholar 

  57. S. Waghulde et al., Cumulative cytotoxicity assay of the aqueous and ethanolic extracts of the selected medicinal plants using crown gall tumor disc bioassay. Chem. Proc. 3(1), 136 (2020)

    Google Scholar 

  58. O.M. Alshehri et al., Phytochemical analysis, total phenolic, flavonoid contents, and anticancer evaluations of solvent extracts and saponins of H. digitata. BioMed Res. Int. (2022). https://doi.org/10.1155/2022/9051678

    Article  PubMed  PubMed Central  Google Scholar 

  59. A.C.C. Manzan et al., Extraction of essential oil and pigments from Curcuma longa [L.] by steam distillation and extraction with volatile solvents. J. Agric. Food Chem. 51(23), 6802–6807 (2003)

    Article  CAS  PubMed  Google Scholar 

  60. S. Raeissi, C.J. Peters, Experimental determination of high-pressure phase equilibria of the ternary system carbon dioxide+ limonene+ linalool. J. Supercrit. Fluids 35(1), 10–17 (2005)

    Article  CAS  Google Scholar 

  61. S. Maharaj, D. McGaw, Mathematical model for the removal of essential oil constituents during steam distillation extraction. Processes 8(4), 400 (2020)

    Article  CAS  Google Scholar 

  62. E. Schmidt, Production of essential oils, in Handbook of Essential Oils. (CRC Press, Boca Raton, 2020), pp.125–160

    Chapter  Google Scholar 

  63. F. Capetti et al., Citral-containing essential oils as potential tyrosinase inhibitors: a bio-guided fractionation approach. Plants 10(5), 969 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. M. Qamar et al., Antiinflammatory and anticancer properties of Grewia asiatica crude extracts and fractions: a bioassay-guided approach. BioMed Res. Int. (2022). https://doi.org/10.1155/2022/2277417

    Article  PubMed  PubMed Central  Google Scholar 

  65. R. Rolta et al., Bioassay guided fractionation of phytocompounds from Bergenia ligulata: a synergistic approach to treat drug resistant bacterial and fungal pathogens. Pharmacol. Res. Mod. Chin. Med. 3, 100076 (2022)

    Article  Google Scholar 

  66. E.M. Njoya, Medicinal plants, antioxidant potential, and cancer, in Cancer. (Elsevier, Amsterdam, 2021), pp.349–357

    Chapter  Google Scholar 

  67. A. Raal et al., Content of essential oil, terpenoids and polyphenols in commercial chamomile (Chamomilla recutita L. Rauschert) teas from different countries. Food Chem. 131(2), 632–638 (2012)

    Article  CAS  Google Scholar 

  68. P.J. Espitia et al., Physical and antibacterial properties of Açaí edible films formulated with thyme essential oil and apple skin polyphenols. J. Food Sci. 79(5), M903–M910 (2014)

    Article  CAS  PubMed  Google Scholar 

  69. T. Kulisic et al., Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem. 85(4), 633–640 (2004)

    Article  CAS  Google Scholar 

  70. G. Ruberto, M.T. Baratta, Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 69(2), 167–174 (2000)

    Article  CAS  Google Scholar 

  71. R. Farag et al., Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. J. Am. Oil Chem. Soc. 66(6), 792–799 (1989)

    Article  CAS  Google Scholar 

  72. M. Michalak, Plant-derived antioxidants: significance in skin health and the ageing process. Int. J. Mol. Sci. 23(2), 585 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. P. Nematiasgarabad, et al., Hordeum vulgare (barley grass) scavenge free radical and inhibits formation of advanced glycation end products formation.

  74. S. Sundaram Sanjay, A.K. Shukla, Mechanism of antioxidant activity, in Potential Therapeutic Applications of Nano-antioxidants. ed. by S. Sundaram Sanjay, A.K. Shukla (Springer, Singapore, 2021), pp.83–99

    Chapter  Google Scholar 

  75. Z. Wu et al., Chemical composition and antioxidant properties of essential oils from peppermint, native spearmint and scotch spearmint. Molecules 24(15), 2825 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. N. Jaradat et al., Chemical fingerprinting, anticancer, anti-inflammatory and free radical scavenging properties of Calamintha fenzlii Vis. volatile oil from Palestine. Arab. J. Sci. Eng. 45, 63–70 (2020)

    Article  CAS  Google Scholar 

  77. Y. Li et al., The chemical composition and antibacterial and antioxidant activities of five citrus essential oils. Molecules 27(20), 7044 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. A. Zeb, Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 44(9), e13394 (2020)

    Article  CAS  PubMed  Google Scholar 

  79. N.F. Santos-Sánchez et al., Antioxidant compounds and their antioxidant mechanism. Antioxidants 10, 1–29 (2019)

    Google Scholar 

  80. S. Rached et al., Characterization, chemical compounds and biological activities of Marrubium vulgare L. essential oil. Processes 10(10), 2110 (2022)

    Article  CAS  Google Scholar 

  81. M. Boskovic et al., Antioxidative activity of thyme (Thymus vulgaris) and oregano (Origanum vulgare) essential oils and their effect on oxidative stability of minced pork packaged under vacuum and modified atmosphere. J. Food Sci. 84(9), 2467–2474 (2019)

    Article  CAS  PubMed  Google Scholar 

  82. T. Kaseke, U.L. Opara, O.A. Fawole, Effect of microwave pretreatment of seeds on the quality and antioxidant capacity of pomegranate seed oil. Foods 9(9), 1287 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. T.G. Kawhena, U.L. Opara, O.A. Fawole, Effects of gum arabic coatings enriched with lemongrass essential oil and pomegranate peel extract on quality maintenance of pomegranate whole fruit and arils. Foods 11(4), 593 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. C. Benzaid et al., Evaluation of the chemical composition, the antioxidant and antimicrobial activities of menthe × piperita essential oil against microbial growth and biofilm formation. J. Essent. Oil Bear. Plants 22(2), 335–346 (2019)

    Article  CAS  Google Scholar 

  85. G. Zengin et al., A comparative study of chamomile essential oils and lipophilic extracts obtained by conventional and greener extraction techniques: chemometric approach to chemical composition and biological activity. Separations 10(1), 18 (2022)

    Article  Google Scholar 

  86. National Committee for Clinical Laboratory Standards,  Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard. NCCLS Document M27-A, National Committee for Clinical Laboratory Standards, Wayne (1997)

  87. M.A. Hanif, et al., Essential oil composition, antimicrobial and antioxidant activities of unexplored Omani basil. (2011)

  88. S. Prabuseenivasan, M. Jayakumar, S. Ignacimuthu, In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 6(1), 39 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  89. H. Jafri, F.M. Husain, I. Ahmad, Antibacterial and antibiofilm activity of some essential oils and compounds against clinical strains of Staphylococcus aureus. J. Biomed. Ther. Sci. 1(1), 65–71 (2014)

    Google Scholar 

  90. C. Tanapichatsakul, S. Khruengsai, P. Pripdeevech, In vitro and in vivo antifungal activity of Cuminum cyminum essential oil against Aspergillus aculeatus causing bunch rot of postharvest grapes. PLoS ONE 15(11), e0242862 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Y.Y. Huo et al., Chemical constituents of the essential oil from Cuminum cyminum l. and its antifungal activity against Panax notoginseng pathogens. Chem. Biodivers. 18(12), e2100638 (2021)

    Article  CAS  PubMed  Google Scholar 

  92. F. Moussaid et al., In vitro antifungal activity of Cinnamum burmannii and Cuminum cyminum essential oils against two nosocomial strains of Aspergillus fumigatus. J. Pharm. Sci. Res. 11(3), 718–720 (2019)

    Google Scholar 

  93. P. Wroblewska-Luczka, J. Luszczki, Additivity interactions between fluconazole and citrus essential oils to Aspergillus fumigatus. J. Pre-Clin. Clin. Res. 15(3), 116–120 (2021)

    Article  CAS  Google Scholar 

  94. N. Parrish et al., Activity of various essential oils against clinical dermatophytes of Microsporum and Trichophyton. Front. Cell. Infect. Microbiol. 10, 567 (2020)

    Article  Google Scholar 

  95. A. Kumar, R. Patel, Formulation and evaluation of in-vitro antifungal activity of lemongrass and citronella oil against selected fungal skin infections.

  96. H. Nadeem, et al., Synthesis and in vitro biological activities of 4,5-disubstituted 1,2,4-triazole-3-thiols. (2013)

Download references

Acknowledgements

The authors thank the Higher Education Commission, Pakistan, for the financial support and the Chemistry Department, University of Agriculture, Faisalabad staff for technical and logistic support. The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 22UQU4430043DSR10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Fawzy Ramadan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Research involving human and/or animal participants

This study does not contain any studies with human participants or animals performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, S., Ahmed, W. & Ramadan, M.F. Cannabis sativa leaf essential oil fractions and bioactive compounds: chemistry, functionality and health-enhancing traits. Food Measure 17, 4575–4593 (2023). https://doi.org/10.1007/s11694-023-01963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01963-z

Keywords

Navigation