Skip to main content
Log in

Functional characterization of edible films based on reactive extrusion acetylated corn starch

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

There is great interest in developing edible films (EFs) with functional properties made from renewable resources to solve environmental problems associated with plastic waste and improve food preservation and safety. Corn starch is the main raw material employed for producing EFs due to its biodegradability, and availability. Nonetheless, the hydrogen bonding interactions of the native starch structure are strong, limiting its use in the development of bioplastics. In addition, starch-based materials are hydrophilic and lack mechanical integrity. A measure to overcome these disadvantages is the starch native structure modification by a reactive extrusion, where acetylation is one of the most applied chemical modifications. The functionality of acetylated modified corn starch is determined by the degree of substitution (DS). Glycerol is a widely used plasticizer in the food area and is essential in forming starch-based EFs, improving their flexibility and elongation. Hence, this research aimed to develop acetylated modified corn starch edible films (AcEFs) with a DS (0–0.2) and Glycerol Content (GC) (15–30%) to improve its functional properties. The acetylated modified corn starch was obtained by reactive extrusion. The casting technique was used to obtain AcEFs; these were characterized and optimized, evaluating the deformation, puncture resistance, carbon dioxide permeability, water vapor permeability, and water solubility. The data was analyzed using the surface response methodology, and the optimization was carried out using the numerical method. According to the optimization study, the AcEFs with the best mechanical and barrier properties were obtained with 0.16 DS and 18.30% GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Ghoshal, H.J. Chopra, Food Meas. Charact. 16(2), 1274–1290 (2022). https://doi.org/10.1007/s11694-021-01234-9

    Article  Google Scholar 

  2. P.R. Fitch-Vargas, E. Aguilar-Palazuelos, J.J. Zazueta-Morales, M.O. Vega-García, J.E. Valdez-Morales, F. Martínez-Bustos, N. Jacobo-Valenzuela, Food Sci. 81(9), E2224–E2232 (2016). https://doi.org/10.1111/1750-3841.13416

    Article  CAS  Google Scholar 

  3. L. Han, Y. Qin, D. Liu, H. Chen, H. Li, M. Yuan, Innov. Food Sci. Emerg. Technol. 29, 288–294 (2015). https://doi.org/10.1016/j.ifset.2015.04.008

    Article  CAS  Google Scholar 

  4. M. Yıldırım-Yalçın, H. Sadıkoğlu, M.J. Şeker, J. Food Meas. Charact. 15(5), 4669–4678 (2021). https://doi.org/10.1007/s11694-021-01038-x

    Article  Google Scholar 

  5. T.J. Gutiérrez, N.J. Morales, E. Pérez, M.S. Tapia, L. Famá, Food Package Shelf Life 3, 1–8 (2015). https://doi.org/10.1016/j.fpsl.2014.09.002

    Article  Google Scholar 

  6. O.V. López, N.E. Zaritzky, M.V.E. Grossmann, M.A. García, J. Food Eng. 116(2), 286–297 (2013). https://doi.org/10.1016/j.jfoodeng.2012.12.032

    Article  CAS  Google Scholar 

  7. J.P. Maran, V. Sivakumar, R. Sridhar, V.P. Immanuel, Ind. Crop Prod. 42, 159–168 (2013). https://doi.org/10.1016/j.indcrop.2012.05.011

    Article  CAS  Google Scholar 

  8. S.M. Beyan, T.A. Amibo, V.P.J. Sundramurthy, J. Food Meas. Charact. 16(3), 2259–2272 (2022). https://doi.org/10.1007/s11694-022-01338-w

    Article  Google Scholar 

  9. J. Colivet, R.A. Carvalho, Ind. Crop Prod. 95, 599–607 (2017). https://doi.org/10.1016/j.indcrop.2016.11.018

    Article  CAS  Google Scholar 

  10. R. Colussi, V.Z. Pinto, S.L.M. El Halal, B. Biduski, L. Prietto, D.D. Castilhos, A.R.G. Dias, Food Chem. 221, 1614–1620 (2017). https://doi.org/10.1016/j.foodchem.2016.10.12

    Article  CAS  PubMed  Google Scholar 

  11. X. Wu, P. Liu, P.L. Ren, J. Tong, J. Zhou, Starch-Stärke 66(5–6), 508–514 (2013). https://doi.org/10.1002/star.201300194

    Article  CAS  Google Scholar 

  12. N. Hu, L.J. Li, Food Process. Preserv. (2021). https://doi.org/10.1111/jfpp.15431

    Article  Google Scholar 

  13. C.I.K. Diop, H.L. Li, B.J. Xie, J. Shi, Food Chem. 126(4), 1662–1669 (2011). https://doi.org/10.1016/j.foodchem.2010.12.05

    Article  CAS  PubMed  Google Scholar 

  14. C.I. La Fuente, L. do Val Siqueira, P.E.D. Augusto, C.C. Tadini, Innov. Food Sci. Emerg. Technol. 75, 102906 (2022). https://doi.org/10.1016/j.ifset.2021.102906

    Article  CAS  Google Scholar 

  15. B. Murúa-Pagola, C.I. Beristain-Guevara, F. Martínez-Bustos, J. Food Eng. 91(3), 380–386 (2009). https://doi.org/10.1016/j.jfoodeng.2008.09.03

    Article  Google Scholar 

  16. A. Calderón-Castro, N. Jacobo-Valenzuela, L.A. Félix-Salazar, J.J. Zazueta-Morales, F. Martínez-Bustos, P.R. Fitch-Vargas, E. Aguilar-Palazuelos, J. Food Sci. Technol. (2019). https://doi.org/10.1007/s13197-019-03863-x

    Article  PubMed  PubMed Central  Google Scholar 

  17. S. Yao, B.J. Wang, Y.M. Weng, Food Package Shelf Life 32, 100845 (2022). https://doi.org/10.1016/j.fpsl.2022.100845

    Article  CAS  Google Scholar 

  18. J.F.G. Motta, A.R. de Souza, S.M. Gonçalves, D.K.S.F. Madella, C.W.P. de Carvalho, L. Vitorazi, N.R. de Melo, Food Bioprocess. Technol. 13(12), 2082–2093 (2020). https://doi.org/10.1007/s11947-020-02548-0

    Article  CAS  Google Scholar 

  19. B. Saberi, Q.V. Vuong, S. Chockchaisawasdee, J.B. Golding, C.J. Scarlett, C.E. Stathopoulos, Food Bioprocess. Technol. 10(12), 2240–2250 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.051

    Article  CAS  Google Scholar 

  20. S.L.M. El Halal, R. Colussi, B. Biduski, J.A. Evangelho, G.P. Bruni, M.D. Antunes, E. Zavareze, J. Sci. Food Agric. 97(2), 411–419 (2016). https://doi.org/10.1002/jsfa.7773

    Article  CAS  PubMed  Google Scholar 

  21. E. Ayranci, S. Tunc, Food Chem. 72(2), 231–236 (2001). https://doi.org/10.1016/s0308-8146(00)00227-2

    Article  CAS  Google Scholar 

  22. M. Chiumarelli, M.D. Hubinger, Food Hydrocoll. 38, 20–27 (2014). https://doi.org/10.1016/j.foodhyd.2013.11.013

    Article  CAS  Google Scholar 

  23. S. Mali, M.V.E. Grossmann, M.A. García, M.N. Martino, N.E. Zaritzky, Food Hydrocoll. 19(1), 157–164 (2005). https://doi.org/10.1016/j.foodhyd.2004.05.002

    Article  CAS  Google Scholar 

  24. M.A. Cerqueira, B.W. Souza, J.A. Teixeira, A.A. Vicente, Food Bioprocess. Technol. 6(6), 1600–1608 (2013). https://doi.org/10.1007/s11947-011-0753-x

    Article  Google Scholar 

  25. C.H. Chen, L.S. Lai, Food Hydrocoll. 22(8), 1584–1595 (2008). https://doi.org/10.1016/j.foodhyd.2007.11.006

    Article  CAS  Google Scholar 

  26. R. Aguilar-Sánchez, R. Munguía-Pérez, F. Reyes-Jurado, A.R. Navarro-Cruz, T.S. Cid-Pérez, P. Hernández-Carranza, R. Avila-Sosa, Molecules. 24(12), 2340 (2019). https://doi.org/10.3390/molecules24122340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M.A. García, M.N. Martino, N.E. Zaritzky, Starch–Stärke 52(4), 118–124 (2000). https://doi.org/10.1002/1521-379X(200006)52:4<118::AID-STAR118>3.0.CO;2-0

    Article  Google Scholar 

  28. M.P.M. García., M.C. Gómez-Guillén, M.E. López-Caballero, G.V. Barbosa-Cánovas, (CRC Press, Boca Raton, Florida, 2016), pp. 616

  29. M.A. Sani, M. Azizi-Lalabadi, M. Tavassoli, K. Mohammadi, D.J. McClements, Nanomaterials 11(5), 1331 (2021). https://doi.org/10.3390/nano11051331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. B. Ghanbarzadeh, H. Almasi, A.A. Entezami, Innov. Food Sci. Emerg. Technol. 11(4), 697–702 (2010). https://doi.org/10.1016/j.ifset.2010.06.001

    Article  CAS  Google Scholar 

  31. A. Pérez-Gallardo, L.A. Bello-Pérez, B. García-Almendárez, G. Montejano-Gaitán, G. Barbosa-Cánovas, C. Regalado, Starch-Stärke 64(1), 27–36 (2011). https://doi.org/10.1002/star.201100042

    Article  CAS  Google Scholar 

  32. B. Ghanbarzadeh, H. Almasi, A.A. Entezami, Ind. Crop Prod. 33(1), 229–235 (2011). https://doi.org/10.1016/j.indcrop.2010.10.016

    Article  CAS  Google Scholar 

  33. R. Sothornvit, P. Rodsamran, Postharvest Bio. Technol. 47(3), 407–415 (2008). https://doi.org/10.1016/j.postharvbio.2007.08

    Article  CAS  Google Scholar 

  34. M.D. Matta Jr., S.B.S. Sarmento, C.I.G.L. Sarantópoulos, S.S. Zocchi, Polímeros. 21(1), 67–72 (2011). https://doi.org/10.1590/s0104-14282011005000011

    Article  Google Scholar 

  35. J.F. Mendes, L.B. Norcino, H.H.A. Martins, A. Manrich, C.G. Otoni, E.E.N. Carvalho, L. Mattoso, Food Hydrocoll. 100, 105428 (2020). https://doi.org/10.1016/j.foodhyd.2019.105428

    Article  CAS  Google Scholar 

  36. L. Zhang, W. Xie, X. Zhao, Y. Liu, W. Gao, Thermochim. Acta 495(1–2), 57–62 (2009). https://doi.org/10.1016/j.tca.2009.05.019

    Article  CAS  Google Scholar 

  37. T.J. Gutiérrez, J. Suniaga, A. Monsalve, N.L. García, Food Hydrocoll. 54, 234–244 (2016). https://doi.org/10.1016/j.foodhyd.2015.10.012

    Article  CAS  Google Scholar 

  38. F. Cruces, M.G. García, N.A. Ochoa, Food Bioprocess. Technol. (2021). https://doi.org/10.1007/s11947-021-02628-9

    Article  Google Scholar 

  39. H.Y. Kim, J. Jane, B. Lamsal, Ind. Crop. Prod. 95, 175–183 (2017). https://doi.org/10.1016/j.indcrop.2016.10.025

    Article  CAS  Google Scholar 

  40. J. Li, F. Ye, J. Liu, G. Zhao, Food Hydrocoll. 46, 226–232 (2015). https://doi.org/10.1016/j.foodhyd.2014.12.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study did not receive specific funding from public agencies or commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

EA-P: Designed the experiment, interpreted the results, and prepared the manuscript. AC-C: Led all the experiments and analyzed the data. PRF-V, LFP-V, ILC-H, and JJZ-M: Contributed technical assistance and helped to revise the manuscript. AC-C: Oversaw the whole research in general and organized the manuscript.

Corresponding author

Correspondence to Abraham Calderón-Castro.

Ethics declarations

Conflict of interest

The manuscript is an original work and is not being considered for publication in other media with substantial circulation. All previously published works cited in the manuscript have been fully acknowledged. All authors have contributed substantially to the manuscript and approved the final submission. No conflicts of interest exist between the authors and the reviewers who proposed to evaluate this manuscript. This manuscript was prepared strictly according to the journal format as provided in the instruction to the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Palazuelos, E., Fitch-Vargas, P.R., Pérez-Vega, L.F. et al. Functional characterization of edible films based on reactive extrusion acetylated corn starch. Food Measure 17, 2363–2373 (2023). https://doi.org/10.1007/s11694-022-01797-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01797-1

Keywords

Navigation