Skip to main content
Log in

Effect of pullulanase debranching on the yield of retrograded pearl millet starch and its intrinsic qualities

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The present study evaluated the effect of debranching process on the production of retrograded starch from pearl millet starch. Starch was debranched with pullulanase for 12 h and stored at 4 °C for 24, 48, and 72 h; intrinsic qualities were determined for both retrograded starch and debranched retrograded starch. Native starch granules had round and smooth surfaces. The granular appearance has been lost and has led to a more compact microstructure due to the retrogradation process. The X- ray diffraction pattern of the native starch granules revealed an A- type with 22.40% crystallinity. After retrogradation and debranching, the crystalline type changed from A-type to B-V type. Consequently the percentage of crystallinity was increased in retrograded starch (55.69%) and debranched retrograded starch (61.53%) stored for 72 h. Amylose content was increased from 29.39 to 49.31% retrograded starch and 35.35 to 47.31% debranched retrograded starch in different storage hours at 24, 48 and 72 h. The X-ray diffraction pattern and scanning electron microscopy analyses showed that pearl millet starch debranched with pullulanase advantages for amylopectin to be debranched by pullulanase and short amylose chains released from amylopectin can form double helices, so the increased percentage of crystallinity and a large, more compact, laminiplantation structure. Debranched retrograded starch significantly (p < 0.05) improved the resistant starch content (52.24%) compared to retrograded starch stored for 72 h (43.67%). The study concluded that debranching and subsequent storage at 48 h best technique to produce a higher amount of resistant starch yield from pearl millet starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Park, Y. Kim, Food Sci. Biotechnol. (2021). https://doi.org/10.1007/s10068-020-00834-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. H. Zia-ud-Din, P.F. Xiong, Crit. Rev. Food. Sci. Nutr (2017). https://doi.org/10.1080/10408398.2015.1087379

    Article  PubMed  Google Scholar 

  3. S. Punia, Int. I. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.088

    Article  Google Scholar 

  4. F. Jiang, C. Du, W. Jiang, L. Wang, S. Du, Int. J. Biol. Macromol. (2010). https://doi.org/10.1016/j.ijbiomac.2019.10.124

    Article  PubMed  Google Scholar 

  5. S.G. Haralampu, Carbohydr. Polym. (2000). https://doi.org/10.1016/S0144-8617(99)00147-2

    Article  Google Scholar 

  6. D.B. Thompson, Trends Food Sci. Technol. (2000). https://doi.org/10.1016/S0924-2244(01)00005-X

    Article  Google Scholar 

  7. E. Bertoft, S. Pérez, Starch. (2010). https://doi.org/10.1002/star.201000013

    Article  Google Scholar 

  8. A.N. Dundar, D. Gocmen, Carbohy. Palym (2003). https://doi.org/10.1016/j.carbpol.2013.04.083

    Article  Google Scholar 

  9. R.A. Gonzalez-Soto, R. Mora-Escobedo, H. Hernandez Sanchez, M. Sanchez-Rivera, L.A. Bello-Perez, Food Res. Int. (2007). https://doi.org/10.1016/j.foodres.2006.04.001

    Article  Google Scholar 

  10. H.J. Chung, Q. Liu, R. Hoover, Carbohydr Polym (2009). https://doi.org/10.1016/j.carbpol.2008.08.006

    Article  Google Scholar 

  11. H. Zhang, Z. Jin, Carbohydr. Polym. (2011). https://doi.org/10.1016/j.carbpol.2010.08.066

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Kapelko, T. Zieba, A. Golachowski, A. Gryszkin, Food Chem (2012). https://doi.org/10.1016/j.foodchem.2012.06.030

    Article  PubMed  Google Scholar 

  13. M. Miao, B. Jiang, T. Zhang, Carbohydr. Polym. (2009). https://doi.org/10.1016/j.carbpol.2008.10.007

    Article  Google Scholar 

  14. S. Shin, C. Lee, D. Kim, H. Lee et al., J. Cereal Sci. (2005). https://doi.org/10.1016/j.jcs.2006.05.001

    Article  Google Scholar 

  15. S. Punia, M. Kumar, A. Siroha, J.K. Kennedy, S.B. Dhull, W.S. Whiteside, Carbohydr. Polym. (2021). https://doi.org/10.1016/j.carbpol.2021.117776

    Article  PubMed  Google Scholar 

  16. T. Ali, A. Hasnain, Int. J. Polym. Sci. (2011). https://doi.org/10.1080/1023666X.2011.562690

    Article  Google Scholar 

  17. H. Englyst, S. Kingman, J. Cummings, Eur. J. Clin. Nutr. 46, 33–50 (1999)

    Google Scholar 

  18. S. Nara, T. Komiya, Starch-Starke (1983). https://doi.org/10.1002/star.19830351202

    Article  Google Scholar 

  19. A. Adebayo, S. Lateef, A. Elizabath, Am. J. Sci. (2010) (https://hdl.handle.net/20.500.12478/2364

  20. V. Williams, W. Wu, H. Tsai, H. Bates, J. Agric. Food Chem. (1958). https://doi.org/10.1021/jf60083a009

    Article  Google Scholar 

  21. W.S. Ratnayaka, R. Hoover, T, Warkentin, Starch/ Starke. (2002) https://doi.org/10.1002/1521-379X(200206)54:6<217::AID-STAR217>3.0.CO;2-R

  22. O. Ikegwe, P. Okechukwu, E. Ekumankana, J. Food Technol. (2010). https://doi.org/10.3923/jftech.2010.58.66

    Article  Google Scholar 

  23. A. Gani, S. Nazia, S. Rather, S. Wani, A. Shah, M. Bashir, LWT Food Sci. Technol. (2014). https://doi.org/10.1016/j.lwt.2014.03.008

    Article  Google Scholar 

  24. A. Gani, S. Haq, F. Masoodi, A. Broadway, A. Gani, Braz. Arch. Biol. Technol. (2010). https://doi.org/10.1590/S1516-89132010000300030

    Article  Google Scholar 

  25. N. Vatanasuchart, P. Tungtrakul, K. Wongkrajang, O. Naivikul, Kastsart journal – Natural Science (2010). https://kasetsartjournal.ku.ac.th/kuj_files/2010/A1001141120475468

  26. A. Babu, R. Parimalavalli, J. Saudi Soc. Agric. Sci. (2018). https://doi.org/10.1016/j.jssas.2016.04.005

    Article  Google Scholar 

  27. P.V. Hung, N.T. Lan-Phi, T.T. Vy-Vy, Starch/Starke (2012). https://doi.org/10.1002/star.201200039

    Article  Google Scholar 

  28. K. Shamaia, H. Bianco-Peled, E. Shimonic, Carbohydra. Polym. (2003). https://doi.org/10.1016/S0144-8617(03)00192-9

    Article  Google Scholar 

  29. K.S. Sandhu, A.K. Siroha, Food Sci. Techno. (2017). https://doi.org/10.1016/j.lwt.2017.05.015

    Article  Google Scholar 

  30. F. Suma, A. Urooj, J. Food Sci. Technol. (2014). https://doi.org/10.1007/s13197-011-0585-8

    Article  PubMed  Google Scholar 

  31. F. Zeng, F. Chen, Q. Kong, R. Gao, M. Aadil, S. Yu, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2015.04.033

    Article  PubMed  Google Scholar 

  32. F. Villas-Boas, C.M.L. Franco, Food hydrocoll. (2016). https://doi.org/10.1016/j.foodhyd.2015.08.024

    Article  Google Scholar 

  33. Z. Wu, Wei, Tiam, Xu, Jin. Starch/staerk. (2017). https://doi.org/10.1002/star.201600078

    Article  Google Scholar 

  34. P. Jirapa, U. Anchanee, N. Onanong, P. Kuakoon, Carbohydr. Polym. (2009). https://doi.org/10.1016/j.carbpol.2009.03.037

    Article  Google Scholar 

  35. O. Sevenou, S.E. Hill, I.A. Farhat, J.R. Mitchell, Int. J. Biol. Macromol. (2002). https://doi.org/10.1016/S0141-8130(02)00067-3

    Article  PubMed  Google Scholar 

  36. A. Aparicio-Saguilan, E. Flores-Huicochea, J. Tovar, F. Garcia-Suareza, Starch/starke. (2005). https://doi.org/10.1002/star.200400386

    Article  Google Scholar 

  37. H. Rosida, Estiasih, Sriwahyuni, Int. J. Food Prop. (2016). https://doi.org/10.1080/10942912.2015.1105818

    Article  Google Scholar 

  38. H. Jian, Q. Gao, S. Liang, Cereals and Oils. (2002). https://doi.org/10.1016/j.foodchem.2006.10.022

    Article  Google Scholar 

  39. R. Hoover, T. Hughes, H.J. Chung, Q. Liu, Food Res. Int. (2010). https://doi.org/10.1016/j.foodres.2009.09.001

    Article  Google Scholar 

  40. S. Ozturk, H. Koksel, J. Food Eng. (2011). https://doi.org/10.1016/j.jfoodeng.2010.10.011

    Article  Google Scholar 

  41. A.R. Yadav, S. Mahadevamma, R.N. Tharanathan, R.S. Ramteke, Food Chem. (2007). https://doi.org/10.1016/j.foodchem.2006.10.012

    Article  Google Scholar 

  42. W. Song, S. Janaswamy, Y. Yao, J. Agric. Food Chem. (2010). https://doi.org/10.1021/jf1011769

    Article  PubMed  Google Scholar 

  43. X.L. Kong, J.S. Bao, H. Corke, Food chem. (2009). https://doi.org/10.1016/j.foodchem.2008.06.028

    Article  Google Scholar 

  44. J.S. Bao, X.L. Kong, J.K. Xie, L.J. Xu, J. Agric. Food Chem. (2004). https://doi.org/10.1021/jf049234i

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Parimalavalli.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manimegalai, P., Parimalavalli, R. Effect of pullulanase debranching on the yield of retrograded pearl millet starch and its intrinsic qualities. Food Measure 17, 2566–2575 (2023). https://doi.org/10.1007/s11694-022-01779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01779-3

Keywords

Navigation