Skip to main content
Log in

Non-destructive detection of the quality attributes of fruits by visible-near infrared spectroscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

How to rapidly and nondestructively detect fruit quality has always been a hot topic in fruit agriculture. In this paper, the quality detection of cream strawberry (CS) and rabbit-eye blueberry (RB) was studied by using visible-near infrared spectroscopy. The preprocessing methods such as de-trending, moving average smoothing, standard normal variable and baseline correction are used to reduce spectral data errors. The competitive adaptive reweighted sampling (CARS), successive projection algorithm (SPA) and the combination of the two algorithms (CARS+SPA) were used to reduce the data dimension. A partial least squares regression was used to establish the prediction model. The results showed that the characteristic wavelength extracted by CARS+SPA algorithm was the most suitable for predicting the contents of soluble solids content (SSC), total acid (TA), and vitamin C (VC) in CS and RB, and the determination coefficients were 0.96, 0.91, 0.91 and 0.93, 0.91, respectively. The relative percent deviation values of the prediction set were 4.47, 3.28, 3.69 and 3.74, 3.57, respectively. The correlation coefficients between the predicted value and the measured value of SSC, TA and VC content were 0.97, 0.92, 0.97 and 0.96, 0.95, respectively, which indicates that the established prediction model is very stable and reliable. This study can provide a theoretical basis for effectively solving the problem of rapid quality detection of multi-variety fruits and the development of multi-variety fruits quality detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.Z. Weng, S. Yu, B.Q. Guo, P.P. Tang, D. Liang, Sensors. 20(11), 3074 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D.D. Xie, D.Y. Liu, W.C. Guo,  Postharvest Biol. Technol. 179, 111569 (2021)

    Article  CAS  Google Scholar 

  3. X.M. Su, J. Zhang, H.Q. Wang, J. Xu, J.M. He, L.Y. Liu, T. Zhang, R.Y. Chen, J. Kang Molecules 22(2), 312 (2017)

    Article  Google Scholar 

  4. D.Y. Zhang, L. Xu, Q.W. Wang, X. Tian, J.B. Li, Food. Anal. Methods 12(1), 136–147 (2019)

    Article  Google Scholar 

  5. F. Antonucci, F. Pallottino, G. Paglia, A. Palma, S. D’Aquino, P. enesatti, Food Bioprocess Technol. 5, 09–813 (2011)

    Google Scholar 

  6. Y. Liu, Q.W. Peng, J.C. Yu, Y.L. Tang, J. Sci. Food Agric. 00(1), 371–375 (2020)

    Article  Google Scholar 

  7. X. Tian, J.B. Li, Q.Y. Wang, S.X. Fan, W.Q. Huang, C.J. Zhao, Biosyst. Eng. 183, 110–120 (2019)

    Article  Google Scholar 

  8. F. Wang, Y.Y. Li, Y.K. Peng, B.N. Yang, L. Li, Y.C. Liu, Spectrosc. Spectr. Anal. 38(12), 3736–3742 (2018)

    CAS  Google Scholar 

  9. Y.P. Huang, R.F. Lu, C. Qi, K.J. Chen, Spectrosc. Spectr. Anal. 38(8), 2362–2368 (2018)

    CAS  Google Scholar 

  10. Y.D. Liu, H.C. Xiao, X.D. Sun, R.B. Han, L.Y. Ye, L. Huang, Y.S. Xiao, X.H. Liao, Spectrosc. Spectr. Anal. 38(2), 528–534 (2018)

    CAS  Google Scholar 

  11. J.A. Xia, W.Y. Zhang, W.X. Zhang, Y.W. Yang, G.Y. Hu, D.K. Ge, H. Liu, H.X. Cao, Comput. Electron. Agric. 181, 105966 (2021)

    Article  Google Scholar 

  12. Z.Z. Su, C. Zhang, T.Y. Yan, J. Zhu, Y.L. Zeng, X.J. Lu, P. Gao, L. Feng, L.H. He, L.H. Fan, Front. Plant Sci. 12, 736334 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  13. K. Wlodarska, J. Szulc, I. Khmelinskii, E. Sikorska, J. Sci. Food Agric. 9(13), 5953–5961 (2019)

    Article  Google Scholar 

  14. Q. Nie, L. Feng, J.L. Hu, S.N. Wang, H.H. Chen, X.J. Huang, S.P. Nie, T. Xiong, M.Y. Xie, J. Sci. Food. Agric. 97, 1459–1466 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. S.X. Fan, C.Y. Li, W.Q. Huang, L.P. Chen, Postharvest Biol. Technol. 134, 55–66 (2017)

    Article  Google Scholar 

  16. S.C. Qiao, Y.W. Tian, Q.H. Wang, S.Y. Song, P. Song, Comput. Electron. Agric. 184, 106100 (2021)

    Article  Google Scholar 

  17. W. Bai, N. Yoshimura, M. Takayanagi, J. Near Infrared Spectrosc. 22, 357–365 (2014)

    Article  CAS  Google Scholar 

  18. G.A. Leiva-Valenzuela, R.F. Lu, J.M. Aguilera, Innov. Food Sci. Emerg. Technol. 24, 2–13 (2014)

    Article  Google Scholar 

  19. G.A. Leiva-Valenzuela, R.F. Lu, J.M. Aguilera, J. Food Eng. 115, 91–98 (2013)

    Article  Google Scholar 

  20. R.K.H. Galvao, A.M.C. Ugulino, W.D. Fragoso, E.C. Silva, G.E. José, S.F.C. Soares, H.M. Paivac, Chemometrics and Intelligent Laboratory Systems. 92(1), 83–91 (2008)

    Article  CAS  Google Scholar 

  21. L. Hu, C. Yin, S. Ma, Z.M. Liu, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 205, 574–581 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. Z.H. Lu, R.T. Lu, Y. Chen, K. Fu, J.X. Song, L.L. Xie, R. Zhai, Z.G. Wang, C.Q. Yang, L.F. Xu, Foods. 11, 1076 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. W.S.K. Agbemavor, W. Torgby-Tetteh, E.K. Quartey, J. Nunoo, W. Nunekpeku, M. Owureku-Asare, J. Agyei-Amponsah, J. Apatey, Int. J. Nutr. Food Sci. 3(4), 318–325 (2014)

    Article  Google Scholar 

  24. X.B. Zou, J.W. Zhao, M.J. Povey, M. Holmes, M. Hanpin, Anal. Chim. Acta 667(1–2), 14 (2010)

    CAS  Google Scholar 

  25. T. Mehmood, K.H. Liland, L. Snipen, S. Sæbø, Chemom. Intell. Lab. Syst. 118, 62–69 (2012)

    Article  CAS  Google Scholar 

  26. H.R. Xu, B. Qi, T. Sun, X.P. Fu, Y.B. Ying, J. Food Eng. 109(1), 142–147 (2012)

    Article  CAS  Google Scholar 

  27. M. Arakawa, Y. Yamashita, K. Funatsu, J. Chemoetrics 25(1), 10–19 (2011)

    Article  CAS  Google Scholar 

  28. L. Hu, C. Yin, S. Ma, Z.M. Liu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 205, 574–581 (2018)

    Article  CAS  Google Scholar 

  29. H. Li, Y. Liang, Q. Xu, D.S. Cao, Analytica Chimica Acta. 648, 77–84 (2009). (in Chinese)

    Article  CAS  PubMed  Google Scholar 

  30. B.M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, J. Lammertyn, Postharvest Biol. Technol. 46(2), 99–118 (2007)

    Article  Google Scholar 

  31. A. Nagy, P. Riczu, J. Tamás, Sci. Hortic. 201, 256–264 (2016)

    Article  CAS  Google Scholar 

  32. L.Q. Pan, R.F. Lu, Q.B. Zhu, J.M. McGrath, K. Tu, Postharvest Biol. Technol. 102, 42–50 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China Program (No.11164004, 61835003), the Guizhou Provincial Photonic Science and Technology Innovation team (Qianke Joint talents team [2015] 4017) and the First-class Physics Promotion Programme (2019) of Guizhou University.

Author information

Authors and Affiliations

Authors

Contributions

LL: conceptualization, methodology, investigation, writing-original draft. D-YH: conceptualization, investigation. T-YT: methodology, investigation. Y-LT: conceptualization, investigation, funding acquisition.

Corresponding author

Correspondence to Yan-Lin Tang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Hu, DY., Tang, TY. et al. Non-destructive detection of the quality attributes of fruits by visible-near infrared spectroscopy. Food Measure 17, 1526–1534 (2023). https://doi.org/10.1007/s11694-022-01724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01724-4

Keywords

Navigation