Skip to main content
Log in

A combination of osmotic shock and ultrasound pre-treatments and the use of enzyme for extraction of proteins from Chlorella vulgaris microalgae: Optimization of extraction conditions by RSM

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, the effect of a combination of osmotic shock, the use of carbohydrase enzyme and ultrasound waves was investigated on protein content (PC), total phenolic content (TPC) and antioxidant activity (AOA) by CUPRAC and DPPH methods of protein extracts from Chlorella vulgaris green microalgae. The extraction parameters (enzyme/substrate ratio (E/S), ultrasound probe time and extraction time) were optimized by using Response Surface Methodology (RSM) based on Box-Behnken design (BBD). According to experimental results, PC, TPC and AOA by CUPRAC method of the extracts ranged from 95.80 to 263.08 mg protein/g dw, 9.68–33.06 mg GAE/g dw and 17.69–34.52 mg TE/g dw, respectively. Water absorption capacity, oil aborption capacity, emulsion activity, emulsion stability, foaming capacity and foaming stability of the proteins extracted under optimum extraction conditions (E/S of 0.87, ultrasound probe time of 119.30 s and extration time of 2.74 h) from C. vulgaris were determined as 12.19 ± 3.84%, 455.44 ± 5.30%, 208.11 ± 0.22%, 73.10 ± 4.68%, 49.17 ± 5.89% and 26.36 ± 1.29%, respectively. All these suggest that protein extracts obtained from C. vulgaris might be a good candidate to improve foods in terms of techno-functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A.K. Koyande, V. Tanzil, H.M. Dharan, M. Subramaniam, R.N. Robert, P.-L. Lau, I. Khoiroh, P.-L. Show, Biochem. Eng. J. (2020). https://doi.org/10.1016/j.bej.2020.107532

    Article  Google Scholar 

  2. C.E. Ejike, S.A. Collins, N. Balasuriya, A.K. Swanson, B. Mason, C.C. Udenigwe, Trends Food Sci. Technol. (2017). https://doi.org/10.1016/j.tifs.2016.10.026

    Article  Google Scholar 

  3. J.C.D. Almeida, M.S. Perassolo, J.L. Camargo, N. Bragagnolo, J.L. Gross, Revista Brasileira de Ciências Farmacêuticas. (2006). https://doi.org/10.1590/S1516-93322006000100012

    Article  Google Scholar 

  4. J. Gray, B. Griffin, Nutr. Bull. (2009). https://doi.org/10.1111/j.1467-3010.2008.01735.x

    Article  Google Scholar 

  5. K.E. Preece, N. Hooshyar, N.J. Zuidam, Innov. Food Sci. Emerg. Technol. (2017). https://doi.org/10.1016/j.ifset.2017.07.024

    Article  Google Scholar 

  6. J.A. Coronado-Reyes, J.A. Salazar-Torres, B. Juárez-Campos, J.C. González-Hernández, Food Science and Technology. (2020). https://doi.org/10.1590/fst.37320

    Article  Google Scholar 

  7. C. Safi, B. Zebib, O. Merah, P.Y. Pontalier, C. Vaca-Garcia, Renew. Sustain. Energy Rev. (2014). https://doi.org/10.1016/j.rser.2014.04.007

    Article  Google Scholar 

  8. J.R.B. Quidilig, G.A.M. Guerrero, D.E.S. Sanchez, K.M. Gatdula, R.L.G. Ventura, E.C. Escobar, J.R.S. Ventura, Philippine e-J Appl. Res. Develop. 8, 15–23 (2018)

    Google Scholar 

  9. K. S. Ojha, R. Aznar, C., O'Donnell, B. K. Tiwari, Trend. Anal. Chem. (2020) https://doi.org/10.1016/j.trac.2019.115663.

  10. A. Yucetepe (2021) European J. Sci. Technol. https://doi.org/10.31590/ejosat.949244

  11. M.A. Bakht, M.H. Geesi, Y. Riadi, M. Imran, M.I. Ali, M.J. Ahsan, N. Ajmal, Saudi J. Biol. Sci. (2019). https://doi.org/10.1016/j.sjbs.2018.07.013

    Article  Google Scholar 

  12. A.P. Middelberg, Biotechnol. Adv. (1995). https://doi.org/10.1016/0734-9750(95)02007-P

    Article  PubMed  Google Scholar 

  13. AOAC., Association of Official Analytical Chemists, 16th edn. (1995)

  14. H. Mohammadpour, S.M. Sadrameli, F. Eslami, A. Asoodeh, Ind. Crops Prod. (2019). https://doi.org/10.1016/j.indcrop.2019.01.030

    Article  Google Scholar 

  15. L. Krienitz, M. Wirth, Limnologica (2006). https://doi.org/10.1016/j.limno.2006.05.002

    Article  Google Scholar 

  16. R. Pilarczyk, J. Wójcik, P. Czerniak, P. Sablik, B. Pilarczyk, A. Tomza-Marciniak, Environ. Monit. Assess. (2013). https://doi.org/10.1007/s10661-013-3180-9

    Article  PubMed  PubMed Central  Google Scholar 

  17. C.V. Morr, B. German, J.E. Kinsella, J.M. Regenstein, J.V. Buren, A. Kilara, B.A. Lewis, M.E. Mangino, J. Food Sci. (1985). https://doi.org/10.1111/j.1365-2621.1985.tb10572.x

    Article  Google Scholar 

  18. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol. Chem. 193, 265–275 (1951)

    Article  CAS  Google Scholar 

  19. H.K. Mæhre, I.J. Jensen, K.E. Eilertsen, Mar. Drugs (2016). https://doi.org/10.3390/md14110196

    Article  PubMed  PubMed Central  Google Scholar 

  20. A. Naseri, C. Jacobsen, J.J. Sejberg, T.E. Pedersen, J. Larsen, K.M. Hansen, S.L. Holdt, Foods. 9(8), 1072 (2020). https://doi.org/10.3390/foods9081072

    Article  CAS  PubMed Central  Google Scholar 

  21. R.K. Toor, G.P. Savage, Food Chem. (2006). https://doi.org/10.1016/j.foodchem.2004.10.054

    Article  Google Scholar 

  22. R. Apak, K. Güçlü, M. Özyürek, S.E. Karademir, Journal of Agricultural and Food. Chemistry (2004). https://doi.org/10.1021/jf048741x

    Article  Google Scholar 

  23. T. Yamaguchi, H. Takamura, T. Matoba, J. Terao, Biotechnol. Biochem. (1998). https://doi.org/10.1271/bbb.62.1201

    Article  Google Scholar 

  24. K.S. Kumar, K. Ganesan, K. Selvaraj, P.S. Rao, Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2013.12.058

    Article  PubMed  Google Scholar 

  25. E. S, Tan, N. Ying-Yuan, C. Y. Gan, Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2013.12.008

  26. M. Jarpa-Parra, F. Bamdad, Y. Wang, Z. Tian, F. Temelli, J. Han, L. Chen, LWT Food Sci Technol. (2014). https://doi.org/10.1016/j.lwt.2014.02.035

    Article  Google Scholar 

  27. Y.A.M. Yusof, J.M.H. Basari, N.A. Mukti, R. Sabuddin, A.R. Muda, S. Sulaiman, W.Z.W. Ngah, Afr. J. Biotech. (2011). https://doi.org/10.5897/AJB11.1602

    Article  Google Scholar 

  28. G. Prabakaran, M. Moovendhan, A. Arumugam, A. Matharasi, R. Dineshkumar, P. Sampathkumar, Waste and Biomass Valorization. (2019). https://doi.org/10.1007/s12649-018-0370-2

    Article  Google Scholar 

  29. A.V. Ursu, A. Marcati, T. Sayd, V. Sante-Lhoutellier, G. Djelveh, P. Michaud, Biores. Technol. (2014). https://doi.org/10.1016/j.biortech.2014.01.071

    Article  Google Scholar 

  30. J.Y. Park, S.A. Choi, M.J. Jeong, B. Nam, Y.K. Oh, J.S. Lee, Biores. Technol. (2014). https://doi.org/10.1016/j.biortech.2014.03.159

    Article  Google Scholar 

  31. D.H.G. Pelegrine, C.A. Gasparetto, LWT-Food Sci. Technol. (2005). https://doi.org/10.1016/j.lwt.2004.03.013

    Article  Google Scholar 

  32. P.A. Harnedy, R.J. FitzGerald, LWT-Food Scie. Technol. (2013). https://doi.org/10.1016/j.lwt.2012.09.023

    Article  Google Scholar 

  33. Y. Joubert, J. Fleurence, J. Appl. Phycol. (2008). https://doi.org/10.1007/s10811-007-9180-9

    Article  Google Scholar 

  34. A. Del Mondo, A. Smerilli, L. Ambrosino, A. Albini, D. M. Noonan, C. Sansone, C. Brunet, I, (2021) Critical Rev Biotechnol. https://doi.org/10.1080/07388551.2021.1874284

  35. R. Agregán, P.E. Munekata, D. Franco, J. Carballo, F.J. Barba, J.M. Lorenzo, Medicines. (2018). https://doi.org/10.3390/medicines5020033

    Article  PubMed  PubMed Central  Google Scholar 

  36. M. Monteiro, R.A. Santos, P. Iglesias, A. Couto, C.R. Serra, I. Gouvinhas, A. Barros, A. Oliva-Teles, P. Enes, P. Díaz-Rosales, J. Appl. Phycol. (2020). https://doi.org/10.1007/s10811-019-01927-1

    Article  Google Scholar 

  37. O. Paredes-López, C. Ordorica-Falomir, J. Sci. Food Agric. (1986). https://doi.org/10.1002/jsfa.2740371108

    Article  Google Scholar 

  38. Y. Chen, J. Chen, C. Chang, J. Chen, F. Cao, J. Zhao, Y. Zheng, J. Zhu, Food Hydrocolloids (2019). https://doi.org/10.1016/j.foodhyd.2019.05.025

    Article  Google Scholar 

  39. S. Benelhadj, A. Gharsallaoui, P. Degraeve, H. Attia, D. Ghorbel, Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2015.08.133

    Article  PubMed  Google Scholar 

  40. S. Bleakley, M. Hayes, Appl. Sci. (2021). https://doi.org/10.3390/app11093964

    Article  Google Scholar 

  41. M. García-Vaquero, M. López-Alonso, M. Hayes, Food Res. Int. (2017). https://doi.org/10.1016/j.foodres.2016.06.023

    Article  PubMed  Google Scholar 

  42. D.M. Ragab, E.E. Babiker, A.H. Eltinay, Food Chem. (2004). https://doi.org/10.1016/S0308-8146(03)00203-6

    Article  Google Scholar 

  43. S. Bashir, M. K. Sharif, M. S. Butt, M. Shahid, Biological Sciences-PJSIR, (2016) http://doi.org/https://doi.org/10.52763/PJSIR.BIOL.SCI.59.1.2016.12.19

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysun Yucetepe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yucetepe, A. A combination of osmotic shock and ultrasound pre-treatments and the use of enzyme for extraction of proteins from Chlorella vulgaris microalgae: Optimization of extraction conditions by RSM. Food Measure 16, 1516–1527 (2022). https://doi.org/10.1007/s11694-021-01258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01258-1

Keywords

Navigation