Skip to main content
Log in

Fortification of bioactive components in mung bean grains through germination and evaluation of their cytotoxic activity in colorectal adenocarcinoma cells

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the changes in the chemical composition, bioactive compounds, and their relationship with cytotoxicity in colorectal adenocarcinoma cells as a function of the time of germination of mung bean grains. Grains of mung beans were germinated for 18 h, 36 h, 54 h, 72 h, and 90 h, and a sample of non-germinated grains was also evaluated. The total phenolic compounds and total flavonoids reached the highest concentrations during germination for 72h and 90 h, while ɣ-aminobutyric acid reached the highest levels after 36 h of germination. The concentration of 1.44 mg GAE/mL of the free fraction extract obtained from grains germinated for 72 h induces an anticancer activity against colorectal adenocarcinoma by above 80%. Grain germination increases the bioactive potential of this raw material, and this study emphasizes the importance of optimizing the germination process in order to obtain the greatest accumulation of the compounds of interest in health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Ganesan, B. Xu, Food Sci Hum Well. (2018). https://doi.org/10.1016/j.fshw.2017.11.002

    Article  Google Scholar 

  2. X. Huang, W. Cai, B. Xu, Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2013.07.080

    Article  PubMed  Google Scholar 

  3. R.R. Hafidh, A. Abdulamir, F. Bakar, F.A. Jalilian, F. Abas, Z. Sekawi, Complement Altern Med. (2012). https://doi.org/10.1186/1472-6882-12-208

    Article  Google Scholar 

  4. D. Tang, Y. Dong, N. Guo, L. Li, H. Ren, J Sci Food Agric. (2014). https://doi.org/10.1002/jsfa.6471

    Article  PubMed  Google Scholar 

  5. Z. Shi, Y. Yao, Y. Zhu, G. Ren, The Crop J. (2016). https://doi.org/10.1016/j.cj.2016.06.011

    Article  Google Scholar 

  6. H.K. Liu, Y. Cao, W.N. Huang, Y.D. Guo, Y.F. Kang, Eur Food Res Tech. (2013). https://doi.org/10.1007/s00217-013-2048-0

    Article  Google Scholar 

  7. K. Ganesan, B. Xu, Ann. N. Y. Acad. Sci. (2017). https://doi.org/10.1111/nyas.13446

    Article  PubMed  Google Scholar 

  8. L. Taiz, E. Zeiger, I. Moller, A. Murphy, Plant Physiology and Development, 6th edn. (Artmed, Porto Alegre, 2017)

    Google Scholar 

  9. F. Cornejo, P.J. Caceres, C. Martínez-Villaluenga, C.M. Rosell, J. Frias, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2014.10.037

    Article  PubMed  Google Scholar 

  10. T.S. Rocha, L.M.R. Hernandez, L. Mojica, M.H. Johnson, Y.K. Chang, E.G. Mejía, Food Res Int. (2015). https://doi.org/10.1016/j.foodres.2015.04.041

    Article  Google Scholar 

  11. C.D. Ferreira, V.K. Bubolz, J. Silva, C.L. Dittgen, V. Ziegler, C.O. Raphaelli, M. Oliveira, LWT-Food Sci Technol. (2019). https://doi.org/10.1016/j.lwt.2019.05.049

    Article  Google Scholar 

  12. BG Tarzi, M Gharachorloo, M Baharinia, SA Mortazavi. Iranian J Pharmaceut Res. (2012). https://pubmed.ncbi.nlm.nih.gov/24250547/

  13. R.Y. Gan, W.Y. Lui, K. Wu, C.L. Chan, S.H. Dai, Z.Q. Sui, Trends Food Sci Technol. (2017). https://doi.org/10.1016/j.tifs.2016.11.010

    Article  Google Scholar 

  14. M.M. Poojary, N. Dellarosa, S. Roohinejad, M. Koubaa, U. Tylewicz, F. Gómez-Galindo, J.A. Saraiva, M.D. Rosa, F.B. Barba, Compr Rev Food Sci F. (2017). https://doi.org/10.1111/1541-4337.12285

    Article  Google Scholar 

  15. American Association of Cereal Chemists AACC (1995). Nitrogen content, method 46-13; Lipid content, method 30-20; Lipids method 30-20, and ash content method 08-01. Approved methods of the American association of Cereal Chemists, Inc, St. Paul, MN, USA.

  16. G.L. Miller, Anal Chem. (1959). https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  17. N.V.M. Mira, I.L. Massaretto, C.S.C.I. Pascual, U.M.L. Marquez, J Food Compos Anal. (2009). https://doi.org/10.1016/j.jfca.2008.06.012

    Article  Google Scholar 

  18. H. Zielinski, H. Kozłowska, J Agricul Food Chem. (2000). https://doi.org/10.1021/jf990619o

    Article  Google Scholar 

  19. J. Zhishen, T. Mengcheng, W. Jianming, Food Chem. (1999). https://doi.org/10.1016/S0308-8146(98)00102-2

    Article  Google Scholar 

  20. R. De Vos, S. Moco, A. Lommen, J.J.B. Keurentjes, R.J. Bino, R.D. Rall, Nat. Protocols. (2007). https://doi.org/10.1038/nprot.2007.95

    Article  PubMed  Google Scholar 

  21. W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT-Food Sci Technol. (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  22. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic Biol Med. (1999). https://doi.org/10.1016/S0891-5849(98)00315-3

    Article  PubMed  Google Scholar 

  23. P. Chalermchaiwat, K. Jangchud, A. Jangchud, C. Charunuch, W. Prinyawiwatkul, LWT-Food Sci Technol. (2015). https://doi.org/10.1016/j.lwt.2015.04.066

    Article  Google Scholar 

  24. T. Mosmann, J Immunol Methods. (1983). https://doi.org/10.1016/0022-1759(83)90303-4

    Article  PubMed  Google Scholar 

  25. R.A. Ghavidel, J. Prakash, LWT-Food Sci Technol. (2007). https://doi.org/10.1016/j.lwt.2006.08.002

    Article  Google Scholar 

  26. R. Rumiyati, A. James, V. Jayasena, Food Nutrit Sci. (2012). https://doi.org/10.13140/2.1.4437.4726

    Article  Google Scholar 

  27. D.K. Kim, S.C. Jeong, S. Gorinstein, S. Chon, Plant Food Hum Nutr. (2012). https://doi.org/10.1007/s11130-011-0273-x

    Article  Google Scholar 

  28. S.O. Salawu, M.J. Bester, K.G. Duodu, J Food Biochem. (2014). https://doi.org/10.1111/jfbc.12026

    Article  Google Scholar 

  29. R. Lorach, C. Favari, D. Alonso, M. Garcia-Aloy, C. Andres-Lacueva, M. Urpi-Sarda, Food Res Int. (2019). https://doi.org/10.1016/j.foodres.2019.108666

    Article  Google Scholar 

  30. G. Kapravelou, R. Martínez, G. Perazzoli, C. Sánchez González, J. Lopis, S. Cantarero, J.M. Porres, Antioxidants. (2020). https://doi.org/10.3390/antiox9080746

    Article  PubMed  PubMed Central  Google Scholar 

  31. K Dajanta, P Janpum, W Leksing. Int Food Res J. (2013). https://research.psru.ac.th/~rdi/files/res_journal53/2556_33122_IFRJ_20_(06)_2013_Djanta337.pdf.

  32. Y. Pang, S. Ahmed, Y. Xu, T. Beta, Z. Zhuc, Y. Shao, J. Bao, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.07.095

    Article  PubMed  Google Scholar 

  33. F. Wang, H. Wang, D. Wang, F. Fang, J. Lai, T. Wu, R. Tsao, J Funct Food. (2015). https://doi.org/10.1016/j.jff.2015.02.016

    Article  Google Scholar 

  34. N. Bouché, H. Fromm, Trends Plant Sci. (2004). https://doi.org/10.1016/j.tplants.2004.01.006

    Article  PubMed  Google Scholar 

  35. N.M. Ali, S. Yeap, H.M. Yusof, B. Beh, W. Ho, S. Koh, M.P. Abdullahm, N.B. Alitheen, K. Long, J Sci Food Agric. (2016). https://doi.org/10.1002/jsfa.7267

    Article  PubMed  Google Scholar 

  36. H.J. Park, S.Y. Choi, S.M. Hong, S.G. Hwang, D. Park, Phyt Res. (2010). https://doi.org/10.1002/ptr.3064

    Article  Google Scholar 

  37. C.I. Teixeira-Guedes, D. Oppolzer, A.I. Barros, C. Pereira-Wilson, J Funct Food. (2019). https://doi.org/10.1016/j.jff.2019.103452

    Article  Google Scholar 

  38. M. Bhardwaj, S. Paul, R. Jakhar, I. Khan, J.I. Kang, H.M. Kim, J.W. Yun, S.J. Lee, H.J. Cho, H.G. Lee, S.C. Kang, Oncotarget (2017). https://doi.org/10.18632/oncotarget.20113

    Article  PubMed  PubMed Central  Google Scholar 

  39. J. Qin, J.X. Chen, Z. Zhu, J.A. Teng, Cell Phys Biochem (2015). https://doi.org/10.1159/000374013

    Article  Google Scholar 

  40. Q. Li, L. Wei, S. Lin, Y. Chen, J. Lin, J. Peng, Mol Med Rep. (2019). https://doi.org/10.3892/mmr.2019.10296

    Article  PubMed  PubMed Central  Google Scholar 

  41. Z. Zhang, S. Zhang, J. Yang, P. Yi, P. Xu, M. Yi, W. Peng, Toxicol Appl Pharmacol. (2020). https://doi.org/10.1016/j.taap.2020.115100

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the financing of this research and to the Technological Institute for Food for Health (Itt Nutrifor) from Unisinos for the provision of laboratories to carry out this research.

Funding

National Council for Scientific and Technological Development—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valmor Ziegler.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziegler, V., Muller, C.P., Mossmann, V. et al. Fortification of bioactive components in mung bean grains through germination and evaluation of their cytotoxic activity in colorectal adenocarcinoma cells. Food Measure 15, 5211–5220 (2021). https://doi.org/10.1007/s11694-021-01094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01094-3

Keywords

Navigation