Skip to main content

Bioactive Compounds of Jack Beans (Canavalia Species)

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Vegetables and Legumes

Abstract

Underutilized and less known legumes possess immense nutritional and bioactive attributes based on the traditional knowledge of tribals or local dwellers. The widely distributed genus Canavalia consists of several species serve as the future source of nutraceuticals owing to their capability to grow under extreme conditions. They are well known for proteins, carbohydrates, fiber, essential amino acids, and essential fatty acids. The nutritional attributes of Canavalia seeds are comparable or higher than other food grains (rice, wheat, and soybean) as well as the FAO-WHO protocol. Seeds of Canavalia possess a number of bioactive principles having precise functions like blood grouping, tissue markers, and immunostimulation. Although studies are available on proteins, carbohydrates, concanavalins, canavanine, canatoxin, vitamins, phytates, saponins, and l-DOPA of Canavalia, further emphasis on these compounds will be necessary for specific applications in medicine (antimicrobial, antiviral, immunomodulation, anticancer, and cytotoxicity), industries (polysaccharides, starch and functional components), and agriculture (pest control and anti-herbivory and nitrogen fixation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Morris JB (2006) Swordbean (Canavalia ensiformis (L.) DC.) genetic resources regenerated for potential medical, nutraceutical and agricultural traits. Genet Resour Crop Evol 54: 585–592

    Article  Google Scholar 

  2. Smartt J (1990) Grain legumes. Cambridge University Press, Cambridge, pp 301–309

    Book  Google Scholar 

  3. Suvarna G, Sharma BB (2020) An analogy of Canavalia lectins by molecular phylogenetic characterization. J Proteins Proteomics. https://doi.org/10.1007/s42485-020-00041-y

  4. Purseglove JW (1974) Tropical crops: Dicotyledons. Longman, London, pp 242–246

    Google Scholar 

  5. Arun AB, Beena KR, Raviraja NS, Sridhar KR (1999) Coastal sand dunes – a neglected ecosystem. Curr Sci 77:19–21

    Google Scholar 

  6. Smartt J (1985) Evolution of grain legumes II. Old and new world pulses of lesser economic importance. Exp Agric 21:1–18

    Article  Google Scholar 

  7. Herklots GAC (1972) Beans and peas: vegetables in South East Asia. George Allen and Unwind Ltd, London, pp 225–236

    Google Scholar 

  8. Kay ED (1979) Food legumes. Digest # 3. Tropical Products Institute, London

    Google Scholar 

  9. Nakanishi H (1988) Dispersal ecology of the maritime plants in the Ryukyu Islands, Japan. Ecol Res 3:163–174

    Article  Google Scholar 

  10. Gross CL (1993) The reproductive ecology of Canavalia rosea (Fabaceae) on Anak Krakatau, Indonesia. Aust J Bot 41:591–599

    Article  Google Scholar 

  11. Sridhar KR, Seena S (2006) Nutritional and antinutritional significance of four unconventional legumes of the genus Canavalia – a comparative study. Food Chem 99:267–288

    Article  CAS  Google Scholar 

  12. Niveditha VR, Sridhar KR, Balasubramanian D (2013) Physical and mechanical properties of seeds and kernels of Canavalia of coastal sand dunes. Int Food Res J 20:1547–1554

    Google Scholar 

  13. Seena S, Sridhar KR (2006) Nutritional and microbiological features of little known legumes, Canavalia cathartica Thouars and C. maritima Thouars of the southwest coast of India. Curr Sci 90:1638–1650

    CAS  Google Scholar 

  14. Livsmedelsverk S (1988) Energi och näringsämnen. The Swedish Food Administration, Stockholm

    Google Scholar 

  15. Arun AB, Sridhar KR, Raviraja NS, Schmidt E, Jung K (2003) Nutritional and antinutritional components of Canavalia spp. seeds from the west coast sand dunes of India. Plant Foods Hum Nutr 58:1–13

    Article  Google Scholar 

  16. Seena S, Sridhar KR, Arun AB, Young C-C (2006) Effect of roasting and pressure-cooking on nutritional and protein quality of seeds of mangrove legume Canavalia cathartica from southwest coast of India. J Food Compos Anal 19:284–293

    Article  CAS  Google Scholar 

  17. Seena S, Sridhar KR, Bhagya B (2005) Biochemical and biological evaluation of an unconventional legume, Canavalia maritima of coastal sand dunes of India. Trop Subtrop Agroecosyst 5:1–14

    Google Scholar 

  18. Niveditha VR, Sridhar KR (2016) Improvement of nutritional qualities of fermented kernels of wild legume Canavalia cathartica by Rhizopus oligosporus. Curr Biochem Eng 3:128–138

    Article  CAS  Google Scholar 

  19. Niveditha VR, Sridhar KR (2015) Nutritional qualities of fermented beans of coastal sand dune wild legume Canavalia maritima. In: Watson RR, Tabor JA, Ehiri JE, Preedy VR (eds) Handbook of public health in natural disasters: nutrition, food, remediation and preparation. Wageningen Academic Publishers, Wageningen, pp 441–462

    Chapter  Google Scholar 

  20. Supriya P, Sridhar KR, Arun AB (2019) Impact of electron beam irradiation on the nutritional attributes of seeds of coastal sand dune wild legume Canavalia cathartica. In: Öztürk M, Hakeem KR (eds) Plants and human health, volume 2 – Phytochemistry and molecular aspects. Springer Nature, Cham, pp 607–625

    Chapter  Google Scholar 

  21. Supriya P, Sridhar KR (2021) Electron-beam irradiation improves legume seed nutritional traits. In: Hakeem KR, Pirzadah TB, Malik B (eds) Bioresource technology: solution to future sustainability. Springer Nature. (in press)

    Google Scholar 

  22. D’Cunha M, Sridhar KR, Young C-C, Arun AB (2009) Nutritional evaluation of germinated seeds of coastal sand dune wild legume Canavalia cathartica. Int Food Res J 16:249–260

    Google Scholar 

  23. D’Cunha M, Sridhar KR, Bhat R (2009) Nutritional quality of germinated seeds of Canavalia maritima of coastal sand dunes. In: Bellinghouse VC (ed) Food processing: methods, techniques and trends. Nova Science Publishers, New York, pp 363–384

    Google Scholar 

  24. Bhagya B, Sridhar KR, Seena S (2006) Biochemical and protein quality evaluation of tender pods of wild legume Canavalia cathartica of coastal sand dunes. Livest Res Rural Dev 18:Article # 93. http://www.cipav.org.co/lrrd/lrrd18/7/bhag18093.htm

    Google Scholar 

  25. Bhagya B, Sridhar KR, Raviraja NS, Young C-C, Arun AB (2009) Nutritional and biological qualities of ripened beans of Canavalia maritima of coastal sand dunes of India. C R Biol 332:25–33

    Article  CAS  PubMed  Google Scholar 

  26. Sridhar KR, Shreelalitha SJ, Supriya P, Arun AB (2016) Nutraceutical attributes of ripened split beans of three Canavalia landraces. Int J Agric Technol 12:1277–1297

    Google Scholar 

  27. Vadivel V, Janardhanan K (2001) Diversity in nutritional composition of wild jack bean (Canavalia ensiformis L. DC.) seeds located from south India. Food Chem 74:507–511

    Article  CAS  Google Scholar 

  28. Michael KG, Sogbesan OA, Onyia LU (2018) Effect of processing methods on the nutritional value of Canavalia ensiformis jack bean seed meal. J Food Process Technol 9:12. https://doi.org/10.4172/2157-7110.1000766

    Article  Google Scholar 

  29. NRC/NAS (1989) Recommended dietary allowances. National Academic Press, Washington, DC

    Google Scholar 

  30. Seena S, Sridhar KR, Jung K (2005) Nutritional and antinutritional evaluation of raw and processed seeds of a wild legume, Canavalia cathartica of coastal sand dunes of India. Food Chem 92:465–472

    Article  CAS  Google Scholar 

  31. Yusuf AA, Mofio BM, Ahmed AB (2007) Proximate and mineral composition of Tamarindus indica Linn 1753 seeds. Sci World J 2:1–4

    Google Scholar 

  32. Shills MEG, Young VR (1988) Modern nutrition in health and disease. In: Neiman DC, Buthepodorth DE, Nieman CN (eds) Nutrition. WmC Brown, Dubugue, pp 276–282

    Google Scholar 

  33. Patra AR, Jajra S, Baral R, Bhattacharya S (2020) Use of selenium as micronutrients and for future anticancer drug: a review. Nucleus. https://doi.org/10.1007/s13237-019-00306-y

  34. FAO-WHO (1991) Protein quality evaluation. Reports of a joint FAO-WHO expert consultation. Food and nutrition paper # 51. Food and Agriculture Organization of the United Nations, Rome, pp 1–66

    Google Scholar 

  35. Supriya P, Sridhar KR, Nareshkumar S, Ganesh S (2012) Impact of electron beam irradiation on fatty acid profile of Canavalia seeds. Food Bioprocess Technol 5:1049–1060

    Article  CAS  Google Scholar 

  36. Vasconcelos IM, Maia FMM, Farias DF, Campello CC, Carvalho AFU et al (2010) Protein fractions, amino acid composition and antinutritional constituents of high-yielding cowpea cultivars. J Food Compos Anal 23:54–60

    Article  CAS  Google Scholar 

  37. Bressani R, Sosa JL (1990) Effect of processing on the nutritive value of Canavalia jack beans (Canavalia ensiformis L.). Plant Foods Hum Nutr 40:207–214

    Article  CAS  PubMed  Google Scholar 

  38. Ekanayake S, Jansz ER, Nair BM (2000) Nutritional evaluation of protein and starch of mature Canavalia gladiata seeds. Int J Food Sci Nutr 51:289–294

    Article  CAS  PubMed  Google Scholar 

  39. Akeson WR, Stahmann MA (1964) A pepsin pancreatin digest index of protein quality. J Nutr 83:257–261

    Article  CAS  PubMed  Google Scholar 

  40. Friedman M (1996) Nutritional value of proteins from different food sources – a review. J Agric Food Chem 44:6–29

    Article  CAS  Google Scholar 

  41. Siddhuraju P, Becker K (2001) Species/variety differences in biochemical composition and nutritional value of Indian tribal legumes of the genus Canavalia. Nahrung 45:224–233

    Article  CAS  PubMed  Google Scholar 

  42. Seena S, Sridhar KR, Ramesh SR (2005) Nutritional and protein quality evaluation of thermally treated seeds of Canavalia maritima in the rat. Nutr Res 25:587–596

    Article  CAS  Google Scholar 

  43. Niveditha VR, Sridhar KR, Tomita-Yokotani K (2014) Improvement of bioactive potential of Canavalia beans of coastal sand dunes by solid-substrate fermentation using Rhizopus oligosporus. Curr Nutr Food Sci 10:308–313

    Article  CAS  Google Scholar 

  44. Shreelalitha J, Supriya P, Sridhar KR (2019) Bioactive profile of edible ripened split beans of three wild landraces of coastal Canavalia. In: Öztürk M, Hakeem KR (eds) Plant and human health, volume 2 – Phytochemistry and molecular aspects. Springer Nature, Cham, pp 517–540

    Chapter  Google Scholar 

  45. Supriya P, Sridhar KR (2019) Impact of electron beam irradiation on the bioactive principles of seeds of coastal sand dune wild legumes (Canavalia spp.). Recent Pat Food Nutr Agric 10:57–61

    Article  CAS  PubMed  Google Scholar 

  46. Gan R-Y, Kong K-W, Li H-B, Wu K, Ge Y-Y et al (2018) Separation, identification, and bioactivities of the main gallotannins of red sword bean (Canavalia gladiata) coats. Front Chem 6:39. https://doi.org/10.3389/fchem.2018.00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carlini CR, Guimaraes JA (1981) Isolation and characterization of toxic protein from Canavalia ensiformis (jack bean) seeds, distinct from concanavalin A. Toxicon 19:667–676

    Article  CAS  PubMed  Google Scholar 

  48. Carlini CR, Oliveira AEA, Azambuja P, Xavier FJ, Wells MA (1997) Biological effects of canatoxin in different insect models: evidence for a proteolytic activation of the toxin by insect cathepsin-like enzymes. J Econ Entomol 90:340–348

    Article  CAS  PubMed  Google Scholar 

  49. Carlini CR, Guimaraes J (1991) Plant and microbial toxic proteins as hemilectins: emphasis on canatoxin. Toxicon 29:791–806

    Article  CAS  PubMed  Google Scholar 

  50. Liener IE (1976) Legume toxins in relation to protein digestibility – a review. J Food Sci 41:1076–1081

    Article  CAS  Google Scholar 

  51. Laurena AC, Rivilleza MJR, Mendoza EMT (1994) Polyphenols, phytate, cyanogenic glycosides and trypsin inhibitory activity of several Philippine indigenous food legumes. J Food Compos Anal 7:194–202

    Article  CAS  Google Scholar 

  52. Okolie NP, Ugochukwu EN (1989) Cyanide content of some Nigerian legumes and the effect of simple processing. Food Chem 32:209–216

    Article  CAS  Google Scholar 

  53. Akpapunam MA, Sefa-Dedeh S (1997) Some physicochemical properties and anti-nutritional factors of raw, cooked and germinated jack bean (Canavalia ensiformis). Food Chem 59:121–125

    Article  CAS  Google Scholar 

  54. Price KR, Curl CL, Fenwick GR (1986) The saponin content and sapogenol composition of the seed of 13 varieties of legume. J Sci Food Agric 37:1185–1191

    Article  CAS  Google Scholar 

  55. Acamovic T (1987) Analysis and nutritional evaluation for young chicks of some toxic factors in three novel legumes. PhD dissertation, University of Edinburgh

    Google Scholar 

  56. Belmar R, Morris TR (1994) Effects of the inclusion of treated jack beans (Canavalia ensiformis) and the amino acid canavanine in chick diets. J Agric Sci 123:393–405

    Article  CAS  Google Scholar 

  57. Dixon NE, Riddles PW, Gazzola C, Blakeley RL, Zerner B (1980) Jack bean urease (EC 3.5.1.5) on the mechanism of action of urease and urea, formamide, acetamide, n-methyl urea and related compounds. Can J Biochem 58:1534–1535

    Google Scholar 

  58. Bell EA, Janzen DH (1971) Medical and ecological considerations of l-DOPA and 5-HTP in seeds. Nature 229:136–137

    Article  CAS  PubMed  Google Scholar 

  59. Mohan VR, Janardhanan K (1994) The biochemical composition and nutrient assessment of less known pulses of the genus Canavalia. Int J Food Sci Nutr 45:255–262

    Article  Google Scholar 

  60. Carlini CR, Udedibie AB (1997) Comparative effects of processing methods on hemagglutinating and antitryptic activities of Canavalia ensiformis and Canavalia braziliensis seeds. J Agric Food Chem 45:4372–4377

    Article  CAS  Google Scholar 

  61. Léon A, Vargas RE, Michelangeli C, Melcion J-P (1998) Detoxification of jackbean (Canavalia ensiformis L.) with pilot scale roasting II: nutritional value for poultry. Anim Feed Sci Technol 73:231–242

    Article  Google Scholar 

  62. Xu M-J, Huang X-P, Li M, Sun W, Cai JR, Lin W-H (2009) Cytotoxic and pro-apoptotic activities of medicarpin from Canavalia maritima (Aubl.) via the suppression of NF-κB activation in HeLa cells. J Chin Pharm Sci 18:331–336

    CAS  Google Scholar 

  63. Niveditha VR, Venkatramana DK, Sridhar KR (2013) Cytotoxic effects of methanol extract of raw, cooked and fermented split beans of Canavalia on cancer cell lines MCF-7 and HT-29. IIOAB J 4:20–23

    Google Scholar 

  64. Abeesh P, Rasmi RR, Guruvayoorappan C (2020) Edible sword bean extract induces apoptosis in cancer cells in vitro and inhibits ascites and solid tumor development in vivo. Nutr Cancer. https://doi.org/10.1080/01635581.2020.1781202

  65. Du G, Li M, Ma F, Liang D (2009) Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem 113:557–562

    Article  CAS  Google Scholar 

  66. Blomhoff R, Carisen MH, Andersen LF, Jacobs DR (2006) Health benefits of nuts potential role of antioxidants. Br J Nutr 96:52–60

    Article  CAS  Google Scholar 

  67. Niveditha VR, Sridhar KR (2014) Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India. J Food Sci Technol 51:3253–3260

    Article  CAS  PubMed  Google Scholar 

  68. Saraswathi K, Rajesh V, Arumugam P (2018) GC-MS, phytochemical analysis and in vitro antioxidant activities of leaves of Canavalia cathartica Thouars. J Phytopharmacol 7:263–269

    Google Scholar 

  69. Prabhu S, Raj LJM, Britto SJ, Senthilkumar SR (2010) Antibacterial activity and preliminary phytochemical analysis of leaf extract of Canavalia rosea (Sw.) DC. (beach bean). Int J Res Pharm Sci 1:428–434

    CAS  Google Scholar 

  70. Rosenthal GA (1992) Purification and characterization of the higher plant enzyme l-canaline reductase. Proc Nat Acad Sci 89:1780–1784

    Article  CAS  PubMed  Google Scholar 

  71. Wijatniko BD, Murdiati A (2018) Antioxidant activity of bioactive peptides derived from the hydrolysates of jack bean (Canavalia ensiformis (L.) DC.) protein isolate. AIP Conf Proc. https://doi.org/10.1063/1.5098433

  72. Andriati N, Anggrahini S, Setyaningsih W, Sofiana L, Pusparasi DA, Mossberg F (2018) Physicochemical characterization of jack bean (Canavalia ensiformis) tempeh. Food Res 3:481–485

    Article  Google Scholar 

  73. Mazalovska M, Kouokam JC (2020) Plant-derived lectins as potential cancer therapeutics and diagnostic tools. Biomed Res Int 2020:1631394. https://doi.org/10.1155/2020/1631394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Suvarna G, Sharma BB (2018) Concanavalin – a potential glycoprotein. J Proteins Proteomics 9:77–90

    CAS  Google Scholar 

  75. Surolia A, Prakash N, Bishayee S, Bachhawat BK (1973) Isolation and comparative physicochemical studies of concanavalin A from Canavalia ensiformis and Canavalia gladiata. Indian J Biochem Biophys 10:145–148

    CAS  PubMed  Google Scholar 

  76. Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 8:1–7

    Google Scholar 

  77. Reano A, Faure M, Jacques Y, Reichert U, Schaefer H, Thivolet J (1982) Lectins as markers of human epidermal cell differentiation. Differentiation 22:205–210

    Article  CAS  PubMed  Google Scholar 

  78. Estruch R, Damjanov I (1986) Lectin histochemistry applied to human nerves. Arch Pathol Lab Med 110:730–735

    CAS  PubMed  Google Scholar 

  79. Gulati AK, Zalewski AA, Sharma KB, Ogrowsky D, Sohal GS (1986) A comparison of lectin binding in rat and human peripheral nerve. J Histochem Cytochem 34:1487–1494

    Article  CAS  PubMed  Google Scholar 

  80. Vecchi M, Torgano G, Monti M, Berti E, Agape A et al (1987) Evaluation of structural and secretory glycoconjugates in normal human jejunum by means of lectin histochemistry. Histochemistry 86:359–364

    Article  CAS  PubMed  Google Scholar 

  81. Ruediger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613

    Article  CAS  Google Scholar 

  82. Rodrigues BF, Torne SG (1990) Lectin activity in the seeds of three Canavalia species. Comp Physiol Ecol 15:123–124

    Google Scholar 

  83. Sekiya K, Nishimura M, Suehiro F, Nishimura H, Hamada T, Kato Y (2008) Enhancement of osteogenesis by concanavalin A in human bone marrow mesenchymal stem cell cultures. Int J Artif Organs 31:708–715

    Article  CAS  PubMed  Google Scholar 

  84. Karnboj SS, Khanna A, Arora JS, Sandhu RS, Kaur K et al (1992) Purification and characterization of a lectin from the seeds of Canavalia obtusifolia DC. J Plant Sci Res 8:83–86

    Google Scholar 

  85. Suseelan KN, Bhagwath A, Pandey R, Gopalakrishna T (2007) Characterization of Con C, a lectin from Canavalia cathartica Thouars seeds. Food Chem 104:528–535

    Article  CAS  Google Scholar 

  86. Kulkarni SR, Tayade VJ (2013) Bacteriostatic activity of Con A lectin from Canavalia ensiformis. Ind J Pharm Biol Res 1:59–63

    Article  CAS  Google Scholar 

  87. Cavalcante TTA, Anderson MRB, Alves CV, Vassiliepe SAF, Fernandes NAS et al (2011) Effect of lectins from Diocleinae subtribe against oral Streptococci. Molecules 16:3530–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hansen JE, Nielsen CM, Nielsen C, Heegaard P, Mathiesen LR, Nielsen JO (1989) Correlation between carbohydrate structures on the envelope glycoprotein gp120 of. HIV-1 and HIV-2 and syncytium inhibition with lectins. AIDS 3:635–642

    Article  CAS  PubMed  Google Scholar 

  89. Matsui T, Kobayashi S, Yoshida O, Ishii S-I, Abe Y, Yamamoto N (1990) Effects of succinylated concanavalin A on infectivity and syncytial formation of human immunodeficiency virus. Med Microbiol Immunol 179:225–235

    Article  CAS  PubMed  Google Scholar 

  90. Okada Y, Kim J (1972) Interaction of concanavalin A with enveloped viruses and host cells. Virology 50:507–515

    Article  CAS  PubMed  Google Scholar 

  91. Li L, Liu W, Wang J, Tu Q, Liu R, Wang J (2010) Lectin-aided separation of circulating tumor cells and assay of their response to an anticancer drug in an integrated microfluidic device. Electrophoresis 31:3159–3166

    Article  CAS  PubMed  Google Scholar 

  92. Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45:593–615

    Article  CAS  PubMed  Google Scholar 

  93. Pearce RB, Peterson CM (1991) Studies of concanavalin A in nonobese diabetic mice. I. Prevention of insulin-dependent diabetes. J Pharmacol Exp Ther 258:710–715

    CAS  PubMed  Google Scholar 

  94. Faheina-Martins GV, da Silveira AL, Cavalcanti BC, Ramos MV, Moraes MO et al (2012) Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines. Toxicol In Vitro 26:1161–1169

    Article  CAS  PubMed  Google Scholar 

  95. Amin AR, Paul RK, Thakur VS, Agarwal ML (2007) A novel role for p73 in the regulation of Akt-Foxo1a-Bim signaling and apoptosis induced by the plant lectin, Concanavalin A. Cancer Res 67:5617–5621

    Article  CAS  PubMed  Google Scholar 

  96. Roy B, Pattanaik AK, Das J, Bhutia SK, Behera B et al (2014) Role of PI3K/Akt/mTOR and MEK/ERK pathway in Concanavalin A induced autophagy in HeLa cells. Chem Biol Interact 210:96–102

    Article  CAS  PubMed  Google Scholar 

  97. Shi Z, Chen J, Li CY, An N, Wang ZJ et al (2014) Antitumor effects of concanavalin A and Sophora flavescens lectin in vitro and in vivo. Acta Pharmacol Sin 35:248–256

    Article  PubMed  CAS  Google Scholar 

  98. Wong JH, Ng TB (2005) Isolation and characterization of a glucose/mannose/rhamnose specific lectin from the knife bean Canavalia gladiata. Arch Biochem Biophys 439:91–98

    Article  CAS  PubMed  Google Scholar 

  99. Neu TR, Swerhone GD, Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313

    Article  CAS  PubMed  Google Scholar 

  100. Kirakosyan A, Kaufman PB, Werber SL, Bolling S, Chang SC, Duke JA (2003) Quantification of major isoflavonoids and l-canavananine in several organs of Kudzu vine (Pueraria montana) and in starch samples derived from kudzu roots. Plant Sci 164:883–888

    Article  CAS  Google Scholar 

  101. Rodrigues BF, Torne SG (1989) Screening an effective native rhizobia for Canavalia ensiformis (L.) DC. Indian J Microbiol 29:239–240

    Google Scholar 

  102. D’Cunha M, Sridhar KR (2010) l-canavanine and l-arginine in two wild legumes of the genus Canavalia. IIOAB J 1:29–33

    Google Scholar 

  103. Hwang ID, Kim SG, Kwon YM (1996) Canavanine metabolism in tissue cultures of Canavalia lineata. Plant Cell Tissue Org Cult 45:17–23

    Article  CAS  Google Scholar 

  104. Rosenthal GA (1970) Investigation of canavanine biochemistry in the jack bean, Canavalia ensiformis (L.) DC. 1. Canavanine utilization in the developing plant. Plant Physiol 46:273–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rosenthal GA (1990) Metabolism of l-canavanine and l-canaline in leguminous plants. Plant Physiol 94:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nakatsu S, Matsuda M, Sakagami T, Takahashi T, Yamatato S (1996) Decomposition of canavanine in process of germination in the seeds of Canavalia gladiata. Seikagaku 38:67–71

    Google Scholar 

  107. Robertson AT, Bates RC, Stout ER (1984) Reversible inhibition of bovine parvovirus DNA replication by aphidicolin and l-canavanine. J Gen Virol 65:1497–1505

    Article  CAS  PubMed  Google Scholar 

  108. Rosenthal GA (1992) The biochemical basis of the insecticidal properties of l-canavanine, a higher plant protective allelochemical. In: Otto D, Weber B (eds) Insecticides: mechanisms of action and resistance. Intercept Ltd, Andover, pp 35–46

    Google Scholar 

  109. Ekanayake S, Skog K, Asp N-G (2007) Canavanine content in sword beans (Canavalia gladiata): analysis and effect of processing. Food Chem Toxicol 45:797–803

    Article  CAS  PubMed  Google Scholar 

  110. Dominguez BMG, Stewart CS (1990) Effects of feeding Canavalia ensiformis on the rumen flora of sheep, and of the toxic amino acid canavanine on rumen bacteria. Syst Appl Microbiol 13:388–393

    Article  Google Scholar 

  111. Swaffar DS, Ang CY (1999) Growth inhibitory effect of l-canavanine against MIA PaCa-2 pancreatic cancer cells is not due to conversion to its toxic metabolite canaline. Anti-Cancer Drugs 10:113–118

    Article  CAS  PubMed  Google Scholar 

  112. Fujihara S, Nakashima T, Kurogochi Y, Yamaguchi M (1986) Distribution and metabolism of sym-homospermidine and canavalamine in the sword bean Canavalia gladiata cultivar Shironata. Plant Physiol 82:795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Seena S, Sridhar KR (2005) Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Res Int 38:803–814

    Article  CAS  Google Scholar 

  114. Niveditha VR, Sridhar KR (2017) Improvement of functional attributes of kernels of wild legume Canavalia maritima by Rhizopus oligosporus. In: Gupta VK, Zeilinger S, Filho EXF, Durán-Domínguez-de-Bazúa M, Purchase D (eds) Microbial applications: recent advancements and future developments. Walter de Gruyter, Berlin, pp 369–388

    Google Scholar 

  115. Supriya P, Sridhar KR, Ghate SD (2018) Impact of electron-beam irradiation on functional attributes of seeds of two coastal wild legume landraces of Canavalia. Recent Pat Biotechnol 12:177–185

    Article  CAS  PubMed  Google Scholar 

  116. Supriya P, Sridhar KR (2019) Proximal and functional properties of edible ripened split beans of coastal wild legume Canavalia maritima. Curr Nutr Food Sci 15:228–233

    Article  CAS  Google Scholar 

  117. Santos S, Moreas MLL, Rezende MOO (2007) Allelopathic potential and systematic evaluation of secondary compounds in extracts from roots of Canavalia ensiformis by capillary electrophoresis. Ecletica Quim 32:13–18

    Article  CAS  Google Scholar 

  118. Rahbé Y, Sauvion N, Febvay G, Peumans WJ, Gatehouse AM (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 76:143–155

    Article  Google Scholar 

  119. Sauvion N, Charles H, Febvay G, Rahbe Y (2004) Effects of jackbean lectin (ConA) on the feeding behaviour and kinetics of intoxication of the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl 110:31–44

    Article  CAS  Google Scholar 

  120. Sprawka I, Goławska S, Parzych T, Goławski A, Czerniewicz P, Sytykiewicz H (2014) Mechanism of entomotoxicity of the concanavalin A in Rhopalosiphum padi (Hemiptera: Aphididae). J Insect Sci 14:1–6

    Article  CAS  Google Scholar 

  121. Sprawka I, Goławska S, Parzych T, Sytykiewicz H, Czerniewicz P (2015) Apoptosis induction by concanavalin A in gut cells of grain aphid. Arthropod Plant Interact 9:133–140

    Article  Google Scholar 

  122. Gatehouse AMR, Davison GM, Stewart JN, Gatehouse LN, Kumar A et al (1999) Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Mol Breed 5:153–165

    Article  CAS  Google Scholar 

  123. Crine P, Lemieux E (1982) Incorporation of canavanine into rats pars intermedia proteins inhibits the maturation of pro-opiomelanocortin, the common precursor of adrenocorticotrophin and β-lipotropin. J Biol Chem 257:832–838

    CAS  PubMed  Google Scholar 

  124. Koul O (1985) Foliage spray tests with l-canavanine for control of Spodoptera litura. Phytoparasitica 13:167–172

    Article  CAS  Google Scholar 

  125. Koul O (1983) l-canavanine from Canavalia ensiformis seeds: effects on fertility of Periplaneta americana (Orthoptera, Blattidae). Z Angew Entomol 96:530–532

    Article  CAS  Google Scholar 

  126. Ghazaleh FA, Araujo CF, Barja F, Carlini CR (1992) Canatoxin induces activation on mice peritoneal macrophages. Br J Med Biol Res 25:1033–1035

    CAS  Google Scholar 

  127. Ferreira DCT, Gombarovits MEC, Masuda H, Oliveira CM, Carlini CR (2000) Proteolytic activation of canatoxin, a plant toxic protein, by insect cathepsin-like enzymes. Arch Insect Biochem Physiol 44:162–171

    Article  Google Scholar 

  128. Staniscuaski F, Ferreira-Dasilva CT, Mulinari F, Pires-Alves M, Carlini CR (2005) Insecticidal effects of canatoxin on the cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Toxicon 45:753–760

    Article  CAS  PubMed  Google Scholar 

  129. Morris JB, Walker JT (2002) Non-traditional legumes as potential soil amendments for nematode control. J Nematol 34:358–361

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Rocha TL, Soll CB, Boughton BA, Silva TS, Oldach K et al (2017) Prospection and identification of nematotoxic compounds from Canavalia ensiformis seeds effective in the control of the root knot nematode Meloidogyne incognita. Biotechnol Res Innov 1:87–100

    Article  Google Scholar 

  131. Arun AB, Sridhar KR (2004) Symbiotic performance of fast-growing rhizobia isolated from the coastal sand dune legumes of west coast of India. Biol Fertil Soils 40:435–439

    Article  Google Scholar 

  132. Arun AB, Sridhar KR (2005) Growth tolerance of rhizobia isolated from sand dune legumes of southwest coast of India. Eng Life Sci 5:134–138

    Article  CAS  Google Scholar 

  133. Seena S, Sridhar KR (2004) Endophytic fungal diversity of 2 sand dune wild legumes from the southwest coast of India. Can J Microbiol 50:1015–1021

    Article  CAS  PubMed  Google Scholar 

  134. Sekita S, Yoshihira K, Natori S, Kuwano H (1976) Structures of chaetoglobosins C, D, E, and F, cytotoxic indol-3-yl-[13]cytochalasans from Chaetomium globosum. Tetrahedron Lett 17:1351–1354

    Article  Google Scholar 

  135. Chitwood DJ (2002) Phytopathological based strategies for nematode control. Annu Rev Phytopathol 40:221–249

    Article  CAS  PubMed  Google Scholar 

  136. Shreelalitha SJ, Supriya P, Sridhar KR, Nareshkumar S (2011) Fatty acid profile of ripened Canavalia split beans of the coastal sand dunes. In: Galvin CD (ed) Sand dunes: ecology, geology and conservation. Nova Science Publishers, New York, pp 43–67

    Google Scholar 

  137. Kutttiappan A, Lakshmi SM, Satyanarayana SV (2019) Antioxidant potential of ethanolic extract of Canavalia species in high-fat diet and streptozotocin-induced diabetic rats. Pharmacogn Res 11:400–405

    Article  Google Scholar 

  138. Sowndhararajan K, Siddhuraju MS (2011) Antioxidant activity of the differentially processed seeds of jack bean (Canavalia ensiformis L. DC). Food Sci Biotechnol 20:585–5914

    Article  CAS  Google Scholar 

  139. Olugboyega SK, Edem AR (2018) Comparative phytochemicals and in vitro antioxidative effects of jack beans (Canavalia ensiformis) and sword beans (Canavalia gladiata). Ann Food Sci Technol 19:499–505

    Google Scholar 

  140. Chaturvedi N, Gupta P, Shukla K (2015) Free radical scavenging and antioxidant activity of underutilized processed jack bean (Canavalia ensiformis) and barnyard millet (Echinochloa frumentacea) flour extracts. Int J Pharm Pharm Res 4:24–34

    Google Scholar 

  141. Gautam B, Vadivel V, Stuetz W, Biesalski HK (2012) Bioactive compounds extracted from Indian wild legume seeds: antioxidant and type II diabetes-related enzyme inhibition properties. Int J Food Sci Nutr 63:242–245

    Article  CAS  PubMed  Google Scholar 

  142. Gan R-Y, Lui W-Y, Corke H (2016) Sword bean (Canavalia gladiata) as a source of antioxidant phenolics. Int J Food Sci Technol 51:156–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sridhar, K.R., Sharma, B.B. (2020). Bioactive Compounds of Jack Beans (Canavalia Species). In: Murthy, H.N., Paek, K.Y. (eds) Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-44578-2_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44578-2_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44578-2

  • Online ISBN: 978-3-030-44578-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics