Skip to main content

Advertisement

Log in

Chemical composition and evaluation of protective effect of Ziziphus spina-christi L. against iron-induced oxidative DNA damage in Tetrahymena pyriformis

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Ziziphus spina-christi has been traditionally used as a folk medicine for a variety of therapeutic benefits. However, there is no well-documented information regarding the protective role of this plant against toxicity induced by the overdose of trace metals, including iron. This work aimed to investigate the major components, as well as the antioxidant profile of aqueous extracts from different Z. spina-christi plant parts (seed, pulp, and almond), and to assess the protective effect of seed extract against iron-induced oxidative DNA damage using Tetrahymena pyriformis as a cellular model. Cells were incubated with iron (II) chloride (FeCl2) FeCl2 (1000 μM) in the absence or presence of seed extract. Lipid peroxidation and reactive oxygen species production were measured using biochemical assays. Intracellular iron accumulation was evaluated through Perl’s Prussian blue staining and ferrozine assay. The DNA damage was evaluated by pulsed-field gel electrophoresis, PCR, and restriction enzyme digestion of metallothionein (MT) gene. HPLC–DAD analysis revealed 21 different phenolic compounds; most of them were identified in the seed extract, while the almond extract exhibited a weak phenolic composition. Accordingly, seed extract showed important in vitro antioxidant activities. Pre-treatment with seed extract significantly reduced the impact of FeCl2, by attenuating MTT reduction, preventing iron accumulation, modulated antioxidant enzyme activity, reduced lipid peroxidation and significantly inhibited DNA damage. Collectively, data showed that Ziziphus spina-christi seed might act as an iron chelator agent with antioxidant properties offering effective protection against cytotoxicity and oxidative DNA damage induced by iron (II) chloride overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAT:

Catalase

CUPRAC:

Cupric ion reducing capacity

FeCl2 :

Iron (II) chloride

FRAP:

Ferric reducing power assay

GPx:

Glutathione peroxidase

GSh:

Reduced glutathione

MCA:

Metal chelating assay

MDA:

Malondialdehyde

MT:

Metallothionein

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide)

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid-reactive substance

TEP:

Tetrahymena pyriformis

TFC:

Total flavonoid contents

TPC:

Total phenolic contents

ZSC:

Ziziphus spina-christi

ZSCA:

Z.spina christi almond

ZSCP:

Z.spina christi pulp

ZSCS:

Z.spina christi seed

References

  1. L. Pari, K. Asaithambi, K. Paramasivam, R. Ayyasam, Toxicol. Rep. 2, 46–55 (2015)

    Article  CAS  Google Scholar 

  2. J.P. Kehrer, Toxicology 149, 43–50 (2000)

    Article  CAS  Google Scholar 

  3. J.W. Eton, M. Qian, Free Radic. Biol. Med. 32, 833–840 (2002)

    Article  Google Scholar 

  4. E. Dimitriou, M. Kairis, J. Sarafidou, H. Michelakakis, Biochem. Biophys. Act. 1501, 138–148 (2000)

    CAS  Google Scholar 

  5. K.S. Madhusudhan, R. Oberoi, Indian J. Nephrol. 21, 134–135 (2011)

    Article  CAS  Google Scholar 

  6. A.A. Mariod, R.M. Ibrahim, M. Ismail, N. Ismail, Food Chem. 118, 120–127 (2010)

    Article  CAS  Google Scholar 

  7. N. Sameera, B. Mandakini, Int. Food Res. J. 22(2), 849–853 (2015)

    Google Scholar 

  8. E. El Maaiden, Y. El Kharrassi, N.A.S. Qarah, A.K. Essamadi, K. Moustaid, B. Nasser, J. Ethnopharmacol. (2020). https://doi.org/10.1016/j.jep.2020.112950

    Article  PubMed  Google Scholar 

  9. M.G.E. Karar, L. Quiet, A. Rezk, R. Jaiswal, M. Rehders, M.S. Ullrich, K. Brix, N. Kuhnert, Med. Chem. 6(3), 143–156 (2016)

    Google Scholar 

  10. J. Liu, C. Wang, Z. Wang, C. Zhang, S. Lu, J. Liu, Food Chem. 126, 261–269 (2011)

    Article  CAS  Google Scholar 

  11. A. Jafarian, B. Zolfaghari, K. Shirani, Adv. Biomed. Res. 3, 38 (2014)

    Article  Google Scholar 

  12. G. Zengin, M. Locatelli, R. Ceylan, A. Aktumsek, J. Enzyme Inhib. Med. Chem. 31, 754–759 (2016)

    Article  CAS  Google Scholar 

  13. D.M. Grochowski, S. Uysal, A. Aktumsek, S. Granica, G. Zengin, R. Ceylan, M. Locatelli, M. Tomczyk, Phytochem. Lett. 20, 365–372 (2017)

    Article  CAS  Google Scholar 

  14. R. Tsao, R. Yang, J. Chromatogr. 1018, 29–40 (2003)

    Article  CAS  Google Scholar 

  15. M. Heinricha, G. Appendino, T. Efferth, R. Fürst, A. Izzoe, O. Kayserf, J. Pezzutog, Viljoenh. 246, 112230 (2020)

    Google Scholar 

  16. L. Francis, J.M. Sally, E. Katerina, M.A. Omar, David, J. Neurochem. 87, 620–630 (2003)

    Article  Google Scholar 

  17. T. Mosmann, J. Immunol. Methods 65, 55–63 (1983)

    Article  CAS  Google Scholar 

  18. C.L. Bowlus, Autoimmun. Rev. 2(2), 73–78 (2003)

    Article  CAS  Google Scholar 

  19. S. Guo, S. Jiang, N. Epperla et al., Blood 133, 17 (2019)

    Article  Google Scholar 

  20. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall et al., J. Biol. Chem. 193, 265–275 (1951)

    Article  CAS  Google Scholar 

  21. M. Nishikimi, N. Appaji, K. Yagi, 46(2). 849–54 (1972)

  22. H. Aebi, Methods Enzymol. 105, 121–126 (1984)

    Article  CAS  Google Scholar 

  23. D.E. Paglia, W.N. Valentine, J. Lab. Clin. Med. 70(1), 158–169 (1967)

    CAS  PubMed  Google Scholar 

  24. V.M. Factor, A. Kiss, J.T. Woitach, P.J. Wirth, S.S. Thorgeirsson, J. Biol. Chem. 273(25), 15846–15853 (1998)

    Article  CAS  Google Scholar 

  25. H. Ohkawa, N. Ohishi, Yagi K. Anal. Biochem. 95(2), 351–358 (1979)

    Article  CAS  Google Scholar 

  26. E. El Maaiden, Y. El Kharrassi, K. Moustaid, A.K. Essamadi, N. Nasser, Food Meas. 13, 121 (2019)

    Article  Google Scholar 

  27. A.E. Adekunle, J.O. Adenike, J. Agric. Sci. 2(1), 21–25 (2012)

    Google Scholar 

  28. F. Alhakmani, S.A. Khan, A. Ahmad, Asian Pac. J. Trop. Biomed. 4(2), S656–S660 (2014)

    Article  Google Scholar 

  29. E.M.M. Ahamed, PhD thesis, Sudan University of Science and Technology (2016)

  30. A.O. Ghafoor, H.K. Qadir, N.A. Fakhri, J. Chem. Pharm. Res. 4(6), 3158–3163 (2012)

    CAS  Google Scholar 

  31. A.M. Abu-Taleb, K. El-Deeb, F.O. Al-Otibi, Afr. J. Microbiol. Res. 5(9), 1001–1011 (2011)

    CAS  Google Scholar 

  32. M.H.A. Suleiman, J. Ethnopharmacol. 176, 232–242 (2015)

    Article  Google Scholar 

  33. M. EL-Hefny, A.A. Mohamed, M.Z.M. Salem, M.S.M. Abd El-Kareem, H.M. Ali, Sci. Hortic. 233, 225–232 (2018)

    Article  CAS  Google Scholar 

  34. G. Abeywickrama, S.C. Debnath, P. Ambigaipalan, F. Shahidi, J. Agric. Food Chem. 64, 9342–9351 (2016)

    Article  CAS  Google Scholar 

  35. L. McGaw, E. Elgorashi, J. Eloff, Toxicol. Surv. Afr. Med. Plants (2014). https://doi.org/10.1016/B978-0-12-800018-2.00008-X

    Article  Google Scholar 

  36. S.A. Gadir, J. Chem. Pharm. Res. 4, 5145–5148 (2012)

    Google Scholar 

  37. A.R. Abu-Raghif, G.A. Jasim, M.M. Hanoon, Int. J. Pharm. Pharm. Sci. 9(2), 279–282 (2017)

    Article  CAS  Google Scholar 

  38. A.L.J. Lizcano, M. Viloria-Bernal, F. Vicente, L.A. Berrueta, B. Gallo, M. Mart, M.B. Ruiz-Larrea, J.I. Ruiz-Sanz, Int. J. Mol. Sci. 13, 5454–5467 (2012)

    Article  CAS  Google Scholar 

  39. M.R. Saleh, M.H. Hasan, A. Adam, J. Pharmacogn. Phytochem. 3, 5–11 (2015)

    Google Scholar 

  40. H.E. Youssif, A.A. Khedr, M.Z. Mahran, Nat. Sci. 9(2), 1–7 (2011)

    Google Scholar 

  41. A.I. Othman, M.A. Amer, M. Abdel-Mogib, R.F. Samaha, Egypt J. Hosp. Med. 37, 759–771 (2009)

    Article  Google Scholar 

  42. J.Azangueu Mafo, D. Kamga Gueobu, R. Regonne, R. Kamga, R. Ndjouenkeu, in 20th SAAFoST Biennial Conference Pretoria (2013)

  43. P.Biyanzi, R. Ndjouenkeu, C.M.F. Mbofung Montpellier, France, 20–23(2012)

  44. C. Chen, Y. Zhou, C. Hu, Y. Wang, Z. Yan, R. Wu, Free Radic. Biol. Med. 136, 22–34 (2007)

    Article  Google Scholar 

  45. D. Malesev, V. Kuntic, J. Serb. Chem. Soc. 72, 921–939 (2019)

    Article  Google Scholar 

  46. V. Katarina, M. Todorovića, T. Varljenb, Z. Slovića, Matićc S J. Acthis (2018)

Download references

Acknowledgements

The authors would like to thank Prof. Mustapha Cherkaoui Malki from the University of Burgundy-Franche-Comté, BioPeroxIL laboratory, Dijon, France, and Dr. Krishna Prasad Devkota from the African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco, for their valuable suggestions and the careful reading of the manuscript.

Funding

Any funding agency provided no funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boubker Nasser.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Maaiden, E., El Kharrassi, Y., Qarah, N.A.S. et al. Chemical composition and evaluation of protective effect of Ziziphus spina-christi L. against iron-induced oxidative DNA damage in Tetrahymena pyriformis. Food Measure 15, 3884–3892 (2021). https://doi.org/10.1007/s11694-021-00975-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00975-x

Keywords

Navigation