Skip to main content
Log in

Investigation on the stability of low‐density lipoproteins modified by phospholipase A2 using asymmetrical flow field‐flow fractionation

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, the effect of external treatment conditions [i.e., heat treatment conditions, storage conditions, pH, and high-intensity ultrasound (HIU)] on the stability of low-density lipoprotein (LDL) in egg yolk plasma modified by phospholipase A2 (PLA2) was studied. Asymmetrical flow field-flow fractionation (AF4) coupled with ultraviolet–visible (UV/Vis), multiangle light scattering (MALS) and differential refractive index (dRI) detectors was employed for the analysis of LDL modified with PLA2. The AF4 results show that PLA2 modification enhanced the stability of LDL in terms of heat treatment and −18 °C storage. However, the extent of aggregation of PLA2-modified egg yolk plasma with HIU treatment (400 W for 10 min) was larger than that of raw egg yolk plasma, and the stability decreased. Alkaline condition (i.e., pH 10) promoted the aggregation of egg yolk plasma regardless of modification with PLA2. The increased knowledge of how external factors studied in this work affect the stability of PLA2-modified LDL could increase the understanding and controlling of properties of the food made of the egg yolk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Andersson, B. Wittgren, K.G. Wahlund, Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments. Anal. Chem. 75(16), 4279–4291 (2003)

    Article  CAS  Google Scholar 

  2. T. Strixner, U. Kulozik, Continuous centrifugal fractionation of egg yolk granules and plasma constituents influenced by process conditions and product characteristics. J. Food Eng. 117(1), 89–98 (2013)

    Article  CAS  Google Scholar 

  3. M. Anton, V. Martinet, M. Dalgalarrondo, V. Beaumal, E. David-Briand, H. Rabesona, Chemical and structural characterisation of low-density lipoproteins purified from hen egg yolk. Food Chem. 83(2), 175–183 (2003)

    Article  CAS  Google Scholar 

  4. M. Le Denmat, M. Anton, V. Beaumal, Characterisation of emulsion properties and of interface composition in O/W emulsions prepared with hen egg yolk, plasma and granules. Food Hydrocoll. 14(6), 539–549 (2000)

    Article  CAS  Google Scholar 

  5. F. Guilmineau, U. Kulozik, Impact of a thermal treatment on the emulsifying properties of egg yolk. Part 1: effect of the heating time. Food Hydrocoll. 20(8), 1105–1113 (2006)

    Article  Google Scholar 

  6. F. Guilmineau, U. Kulozik, Impact of a thermal treatment on the emulsifying properties of egg yolk. Part 2: effect of the environmental conditions. Food Hydrocoll. 20(8), 1114–1123 (2006)

    Article  CAS  Google Scholar 

  7. C.E. Dutilh, W. Groger, Improvement of product attributes of mayonnaise by enzymic hydrolysis of egg yolk with phospholipase A2. J. Sci. Food Agric. 32(5), 451–458 (1981)

    Article  CAS  Google Scholar 

  8. K. Daimer, U. Kulozik, Impact of a treatment with phospholipase A2 on the physicochemical properties of hen egg yolk. J. Agric. Food Chem. 56(11), 4172–4180 (2008)

    Article  CAS  Google Scholar 

  9. Y. Mine, Structural and functional changes of hen’s egg yolk low-density lipoproteins with phospholipase A2. J. Agric. Food Chem. 45(12), 4558–4563 (1997)

    Article  CAS  Google Scholar 

  10. H. Dou, X. Zhang, A. Zhang, J. Choi, J. Wang, S. Shen, W. Zhang, Y. Li, L. Ding, S. Lee, Study on external factors affecting egg yolk plasma by asymmetrical flow field-flow fractionation. Food Res. Int. 94, 13–19 (2017)

    Article  CAS  Google Scholar 

  11. K. Daimer, U. Kulozik, Oil-in-water emulsion properties of egg yolk: effect of enzymatic modification by phospholipase A2. Food Hydrocoll. 23(5), 1366–1373 (2009)

    Article  CAS  Google Scholar 

  12. T. Strixner, R. Würth, U. Kulozik, Combined effects of enzymatic treatment and spray drying on the functional properties of egg yolk main fractions granules and plasma. Dry. Technol. 31(13–14), 1485–1496 (2013)

    Article  CAS  Google Scholar 

  13. D. Gazolu-Rusanova, F. Mustan, Z. Vinarov, S. Tcholakova, N. Denkov, S. Stoyanov, J.W.J. de Folter, Role of lysophospholipids on the interfacial and liquid film properties of enzymatically modified egg yolk solutions. Food Hydrocoll. 99, 105319 (2020)

    Article  CAS  Google Scholar 

  14. J.C. Giddings, Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260(5113), 1456–1465 (1993)

    Article  CAS  Google Scholar 

  15. K.-G. Wahlund, J.C. Giddings, Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal. Chem. 59(9), 1332–1339 (1987)

    Article  CAS  Google Scholar 

  16. D. Haute, W. Jiang, T. Mudalige, Evaluation of size-based distribution of drug and excipient in amphotericin B liposomal formulation. Int. J. Pharm. 569, 118603 (2019)

    Article  Google Scholar 

  17. C.R.M. Bria, F. Afshinnia, P.W. Skelly, T.M. Rajendiran, P. Kayampilly, T.P. Thomas, V.P. Andreev, S. Pennathur, K.R. Williams, Asymmetrical flow field-flow fractionation for improved characterization of human plasma lipoproteins. Anal. Bioanal. Chem. 411, 777–786 (2018)

    Article  Google Scholar 

  18. M. Amde, Z.Q. Tan, J. Liu, Separation and size characterization of zinc oxide nanoparticles in environmental waters using asymmetrical flow field-flow fractionation. Talanta 200, 357–365 (2019)

    Article  CAS  Google Scholar 

  19. X. Zhang, Y. Li, S. Shen, S. Lee, H. Dou, Field-flow fractionation: a gentle separation and characterization technique in biomedicine. Trends Anal. Chem. 108, 231–238 (2018)

    Article  CAS  Google Scholar 

  20. M.H. Moon, Flow field-flow fractionation: recent applications for lipidomic and proteomic analysis. Trends Anal. Chem. 118, 19–28 (2019)

    Article  CAS  Google Scholar 

  21. M. Marioli, W. Kok, Recovery, overloading, and protein interactions in asymmetrical flow field-flow fractionation. Anal. Bioanal. Chem. 411(11), 2327–2338 (2019)

    Article  CAS  Google Scholar 

  22. X. Zhao, T. Xing, X. Xu, G. Zhou, Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food Chem. 319, 126574 (2020)

    Article  CAS  Google Scholar 

  23. H. Dou, E. Magnusson, J. Choi, F. Duan, L. Nilsson, S. Lee, Study on aggregation behavior of low density lipoprotein in hen egg yolk plasma by asymmetrical flow field-flow fractionation coupled with multiple detectors. Food Chem. 192, 228–234 (2016)

    Article  CAS  Google Scholar 

  24. P. Guo, Y. Li, J. An, S. Shen, H. Dou, Study on structure–function of starch by asymmetrical flow field-flow fractionation coupled with multiple detectors: a review. Carbohydr. Polym. 226, 115330 (2019)

    Article  CAS  Google Scholar 

  25. B. Wittgren, K.-G. Wahlund, H. Dérand, B. Wesslén, Aggregation behavior of an amphiphilic graft copolymer in aqueous medium studied by asymmetrical flow field-flow fractionation. Macromolecules 29(1), 268–276 (1996)

    Article  CAS  Google Scholar 

  26. B. Zimm, The scattering of light and the radial distribution function of high polymer solutions. J. Chem. Phys. 16, 1093–1099 (1948)

    Article  CAS  Google Scholar 

  27. M. Andersson, B. Wittgren, K.G. Wahlund, Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments. Anal. Chem. 75(16), 4279–4291 (2003)

    Article  CAS  Google Scholar 

  28. M. Primacella, T. Wang, N.C. Acevedo, Characterization of mayonnaise properties prepared using frozen-thawed egg yolk treated with hydrolyzed egg yolk proteins as anti-gelator. Food Hydrocoll. 96, 529–536 (2019)

    Article  CAS  Google Scholar 

  29. F. Speroni, M.C. Puppo, N. Chapleau, M. de Lamballerie, O. Castellani, M.C. Anon, M. Anton, High-pressure induced physicochemical and functional modifications of low-density lipoproteins from hen egg yolk. J. Agric. Food Chem. 53(14), 5719–5725 (2005)

    Article  CAS  Google Scholar 

  30. Y. Xie, J. Wang, Y. Shi, Y. Wang, L. Cheng, L. Liu, N. Wang, H. Li, D. Wu, F. Geng, Molecular aggregation and property changes of egg yolk low-density lipoprotein induced by ethanol and high-density ultrasound. Ultrason. Sonochem. 63, 104933 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the Nature Science Foundation of Hebei Province (B2016201002 and H2020201295), the Key Project of Hebei Education Department (ZD2019009), the Medical Science Foundation of Hebei University (2020A08), and the Post-graduate’s Innovation Fund Project (hbu2020ss056 and hbu2021ss023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang or Haiyang Dou.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Guo, Y., Song, T. et al. Investigation on the stability of low‐density lipoproteins modified by phospholipase A2 using asymmetrical flow field‐flow fractionation. Food Measure 15, 3350–3356 (2021). https://doi.org/10.1007/s11694-021-00918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00918-6

Keywords

Navigation