Skip to main content
Log in

Rapid detection of enrofloxacin using a localized surface plasmon resonance sensor based on polydopamine molecular imprinted recognition polymer

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Due to concerns of antibiotic-resistant bacterial strains from animal-derived food products, different countries or organizations have established their maximum residue limits for antibiotics. Current HPLC and ELISA methods are commonly used in testing antibiotic residues, but have their limitations for in-field rapid detections. Localized surface plasmon resonance (LSPR) sensors have shown great potential in biodetection, due to its sensitive, label-free and real-time features. Therefore, the objective of this project was to develop an LSPR biosensing method for rapid, sensitive and specific detection of enrofloxacin (ENRO), using polydopamine molecular imprinted polymer (PDA-MIP) as the recognition element. The PDA-MIP film was fabricated by polymerization of dopamine and ENRO in Tris buffer on the surface of LSPR sensor chip. After blocking with bovine serum albumin and removal with sodium dodecyl sulphate, the modified sensor chip was used to selectively capture ENRO in a sample. To amplify LSPR detection signals of ENRO, conjugates with protein molecules were synthesized, served as competitors, and reacted with the residual binding sites on the PDA-MIP film. The detection could be done within 20 min, with a detection range of 25–1000 ng/mL and a limit of detection of 61.1 ng/mL. The PDA-MIP film demonstrated a higher binding capacity to ENRO than the corresponding non-imprinted polymer film, and discriminated ENRO among structural analogues. Good reusability was achieved within seven binding-regeneration cycles, with a low relative standard deviation. With high sensitivity, specificity and stability, the developed LSPR/PDA-MIP sensor showed its potential for in-field rapid detection of ENRO residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.A. Mungroo, S. Neethirajan, Biosensors 4(4), 472–493 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  2. J. Nemeth, G. Oesch, S.P. Kuster, J. Antimicrob. Chemother. 70(2), 382–395 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. D.C. Hooper, Clin. Infect. Dis. 32, S9–S15 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. M. Underner, B. Grignon, F. Roblot, J.C. Meurice, F. Patte, Rev. Pneumol. Clin. 45(1), 14–22 (1989)

    CAS  PubMed  Google Scholar 

  5. Tolerances for residues of new animal drugs in food, 21 CFR § 556.226. (U S Food and Drug Administration, 2019), https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=556.226. Assessed 1 April 2019

  6. Veterinary medicines and inspections, EMEA/MRL/820/02-FINAL. (The European Agency for the Evaluation of Medicinal Products, 2002), https://www.ema.europa.eu/en/documents/mrl-report/enrofloxacin-extension-all-food-producing-species-summary-report-5-committee-veterinary-medicinal_en.pdf. Assessed Jan 2002

  7. Announcement No. 235. (Ministry of Agriculture of the People's Republic of China, 2002), https://www.fsis.usda.gov/wps/wcm/connect/9d445f3c-91b4-4565-9782-c49cbd780e17/China-Announcement-235.pdf?MOD=AJPERES. Assessed 24 Dec 2002

  8. G.W. Latimer, Official Methods of Analysis, 21st edn. (Association of Official Analytical Chemists International, Gaithersburg, 2019).

    Google Scholar 

  9. Commission decision of 12 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, 2002/657/EC. (European Commission, 2002). https://op.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en

  10. N. Virolainen, M. Karp, Adv. Biochem. Eng. Biotechnol. 145, 153–185 (2014)

    CAS  PubMed  Google Scholar 

  11. C. Caucheteur, T. Guo, J. Albert, Anal. Bioanal. Chem. 407(14), 3883–3897 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. F. Ricci, G. Volpe, L. Micheli, G. Palleschi, Anal. Chim. Acta. 605(2), 111–129 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Li, X. Liu, Z. Lin, Food Chem. 132(3), 1549–1554 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. A. Csaki, O. Stranik, W. Fritzsche, Expert Rev. Mol. Diagn. 18(3), 279–296 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. M. Svedendahl, S. Chen, A. Dmitriev, M. Kall, Nano Lett. 9(12), 4428–4433 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. J. Zhao, X. Zhang, C.R. Yonzon, A.J. Haes, R.P. Van Duyne, Nanomedicine 1(2), 219–228 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. A. Blidar, B. Feier, M. Tertis, R. Galatus, C. Cristea, Anal. Bioanal. Chem. 411(5), 1053–1065 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. E. Tenaglia, A. Ferretti, L.A. Decosterd, D. Werner, T. Mercier, N. Widmer, T. Buclin, C. Guiducci, J. Pharm. Biomed. Anal. 159, 341–347 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. F. Fernandez, K. Hegnerova, M. Piliarik, F. Sanchez-Baeza, J. Homola, M.P. Marco, Biosens. Bioelectron. 26(4), 1231–1238 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. A.C. Huet, C. Charlier, G. Singh, S.B. Godefroy, J. Leivo, M. Vehniainen, M.W. Nielen, S. Weigel, P. Delahaut, Anal. Chim. Acta. 623(2), 195–203 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. E. Aydindogan, S. Balaban, S. Evran, H. Coskunol, S. Timur, Biosensors 9(4), 118 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  22. J. Matsui, K. Tamaki, N. Sugimoto, Anal. Chim. Acta 466(1), 11–15 (2002)

    Article  CAS  Google Scholar 

  23. A.G. Ayankojo, J. Reut, A. Öpik, A. Furchner, V. Syritski, Biosens. Bioelectron. 118, 102–107 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. L. Zhang, C. Zhu, C. Chen, S. Zhu, J. Zhou, M. Wang, P. Shang, Food Chem. 266, 170–174 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. A.M. Shrivastav, S.P. Usha, B.D. Gupta, Biosens. Bioelectron. 90, 516–524 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. Q. Luo, N. Yu, C. Shi, X. Wang, J. Wu, Talanta 161, 797–803 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. M. Martin, A. Gonzalez Orive, P. Lorenzo-Luis, A. Hernandez Creus, J.L. Gonzalez-Mora, P. Salazar, ChemPhysChem 15(17), 3742–3752 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. P. Palladino, F. Bettazzi, S. Scarano, Anal. Bioanal. Chem. 411(19), 4327–4338 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. F. Chen, W. Zhao, J. Zhang, J. Kong, Phys. Chem. Chem. Phys. 18(2), 718–725 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. F. Tan, M. Liu, S. Ren, Sci. Rep. 7(1), 5735 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  31. S. Zavareh, M. Mahdi, S. Erfanian, H. Hashemi-Moghaddam, Cancer Chemother. Pharmacol. 78(5), 1073–1084 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. G.H. Yao, R.P. Liang, C.F. Huang, Y. Wang, J.D. Qiu, Anal. Chem. 85(24), 11944–11951 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. P. Palladino, M. Minunni, S. Scarano, Biosens. Bioelectron. 106, 93–98 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. B. Huang, Y. Yin, L. Lu, H. Ding, L. Wang, T. Yu, J.J. Zhu, X.D. Zheng, Y.Z. Zhang, J. Zhejiang Univ. Sci. B. 11(10), 812–818 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Adrian, H. Font, J.M. Diserens, F. Sanchez-Baeza, M.P. Marco, J. Agric. Food Chem. 57(2), 385–394 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. M. Pan, S. Li, J. Wang, W. Sheng, S. Wang, Sensors 17(9), 1984 (2017)

    Article  PubMed Central  Google Scholar 

  37. R. Chaowana, O. Bunkoed, Anal. Bioanal Chem. 411, 6081–6090 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. N. Orachorn, O. Bunkoed, Talanta 203, 261–268 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. E. Sari, R. Uzek, M. Duman, A. Denizli, J. Biomater. Sci. Polym. Ed. 29(11), 1302–1318 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Z. Altintas, Sci. Rep. 8(1), 11222 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  41. A. Pennacchio, A. Varriale, M.G. Esposito, A. Scala, V.M. Marzullo, M. Staiano, S. D’Auria, PLoS ONE 10(7), e0132396 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  42. D.A. Armbruster, T. Pry, Clin. Biochem. Rev. 29(Suppl 1), S49-52 (2008)

    PubMed  PubMed Central  Google Scholar 

  43. Z. Wang, Y. Zhu, S. Ding, F. He, R.C. Beier, J. Li, H. Jiang, C. Feng, Y. Wan, S. Zhang, Z. Kai, X. Yang, J. Shen, Anal. Chem. 79(12), 4471–4483 (2007)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was sponsored by Walmart Foundation (0402-70013-21-0000) and supported by the Walmart Food Safety Collaboration Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, R., Liao, M. et al. Rapid detection of enrofloxacin using a localized surface plasmon resonance sensor based on polydopamine molecular imprinted recognition polymer. Food Measure 15, 3376–3386 (2021). https://doi.org/10.1007/s11694-021-00913-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00913-x

Keywords

Navigation