Skip to main content
Log in

The effects of microalgae (Spirulina platensis and Chlorella vulgaris) extracts on the quality of vacuum packaged sardine during chilled storage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The influence of water extracts of Spirulina platensis and Chlorella vulgaris (1%) on sensory, chemical and microbiological changes was investigated in vacuum packaged sardine fillets at 4 ± 1 °C for 15 days. Mineral content and bioactive chemical components of microalgae samples were also detected by ICP-MS and GC–MS, respectively. The results showed that S. platensis and C. vulgaris were rich in mineral. Main components in the extracts of C. vulgaris and S. platensis were 3,5-dichloro-6- nitrocholestane (31.74%) and dioctylamine (67.64%), respectively. The extracts prolonged sensorial shelf life of sardine for 3 days although S. platensis group was more preffered than C. vulgaris. These microalgae extracts delayed lipid oxidation and inhibited bacterial growth apart from Gram-positive lactic acid bacteria in sardine meat. The study result revelaed that both extracts can be used as antioxidant and antimicrobial additives to maintain sensory characteristic of sardine fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.M. El-Sheekh, M.E.H. Osman, M.A. Dyab, M.S. Amer, Environ. Toxicol. Pharmacol. 21, 42–50 (2006). https://doi.org/10.1016/j.etap.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  2. N. Barzkar, S.T. Jahromi, H.B. Poorsaheli, F. Vianello, Mar. Drugs 17, 1–29 (2019). https://doi.org/10.3390/md17080464

    Article  CAS  Google Scholar 

  3. M.J. Pérez, E. Falqué, H. Domínguez, Mar. Drugs 14, 1–38 (2016). https://doi.org/10.3390/md14030052

    Article  CAS  Google Scholar 

  4. M.I. Khan, J.H. Shin, J.D. Kim, Microb. Cell Fact. 17, 1–21 (2018)

    Article  Google Scholar 

  5. M.C. Dalay, E. Imamoğlu, S. Öncel, Final Report of TUBITAK Project (104M354), Ankara, Turkey, p.103 (2008)

  6. A. Finamore, M. Palmery, S. Bensehaila, I. Peluso, Oxid. Med. Cell Longev. 2017, 1–14 (2017). https://doi.org/10.1155/2017/3247528

    Article  CAS  Google Scholar 

  7. L.M. Andrade, C.J. Andrade, M. Dias, C.A.O. Nascimento, M.A. Mendes, MOJ Food Process Technol. 1, 45–58 (2018). https://doi.org/10.15406/mojfpt.2018.06.00144

    Article  Google Scholar 

  8. Q. Wu, L. Liu, A. Miron, B. Klímová, D. Wan, K. Kuča, Arch. Toxicol. 90, 1817–1840 (2016). https://doi.org/10.1007/s00204-016-1744-5

    Article  CAS  PubMed  Google Scholar 

  9. C. Romay, J. Armesto, D. Remirez, R. González, N. Ledon, I. García, Inflamm. Res. 47, 36–41 (1998). https://doi.org/10.1007/s000110050256

    Article  CAS  PubMed  Google Scholar 

  10. M.M. El-Sheekh, S.M. Daboor, M.A. Swelim, S. Mohamed, Iran. J. Microbiol. 6, 112–119 (2014)

    PubMed  PubMed Central  Google Scholar 

  11. T. Ould Bellahcen, M. Cherki, J.A.C. Sánchez, A. Cherif, A. El Amrani, J. Essent. Oil-Bear. 22, 1265–1276 (2019). doi:https://doi.org/10.1080/0972060X.2019.1669492

  12. B. Fernandes, G. Dragone, A. Abreu, P. Geada, J. Teixeira, A. Vicente, J. Appl. Phycol. 24, 1203–1208 (2012). https://doi.org/10.1007/s10811-011-9761-5

    Article  CAS  Google Scholar 

  13. I. Rodriguez-Garcia, J.L. Guil-Guerrero, Food Chem. 108, 1023–1026 (2008). https://doi.org/10.1016/j.foodchem.2007.11.059

    Article  CAS  PubMed  Google Scholar 

  14. K. Vijayavel, C. Anbuselvam, M.P. Balasubramanian, Mol. Cell Biochem. 303, 39–44 (2007). https://doi.org/10.1007/s11010-007-9453-2

    Article  CAS  PubMed  Google Scholar 

  15. H. Alwathnani, K. Perveen, Biomed. Res. 28, 1610–1614 (2017)

    CAS  Google Scholar 

  16. H.J. Hussein, S.S. Naji, N.M.S. Al-Khafaji, Pharm. Sci. Res. 10, 2457–2460 (2018)

    CAS  Google Scholar 

  17. E.C. Bligh, W.J. Dyer, Can. J. Biochem. Physiol. 37, 913–917 (1959)

    Article  Google Scholar 

  18. AOAC, Official Method 920.153 Ash content. In Official methods of analysis, 17th edn. Gaithersburg, MD, (2002).

  19. AOAC Official Method 950.46 Moisture content in meat. In Official methods of analysis, 17th ed. Gaithersburg, MD, (2002).

  20. R. Mendes, C. Pestana, G. Amparo, Int. J. Food Sci. Technol. 43, 2000–2009 (2008)

    Article  CAS  Google Scholar 

  21. A.J. Koning, T.H. Mol, J. Sci. Food Agric. 54, 449–458 (1991)

    Article  Google Scholar 

  22. K.I. Ichihara, A. Shibahara, K. Yamamoto, T. Nakayama, Lipids 31, 535–539 (1996)

    Article  CAS  Google Scholar 

  23. N. Antonocopoulus, Bestmmung des flüchhtigen basensticktoofs, in Fische und fischerzeugnisse. ed. by W. Ludorf, V. Meyer (Aulage Verlag Paul Parey, Berlin Und Hamburg, 1973), pp. 224–225

    Google Scholar 

  24. B. Tarladgis, B.M. Watts, M. Yonathan, J. Am. Oil Chem. Soc. 37, 44–48 (1960)

    Article  CAS  Google Scholar 

  25. AOCS Official Method Ca 5a–40 Free fatty acids. In: Firestone DE (ed) Official methods and recommended practices of the American Oil Chemists’ Society (5th ed.). Champaign, IL (1997)

  26. AOCS, Peroxide value. AOCS official method. In: D. Firestone (ed), 5th edn. Official methods and recommended practices of AOCS. Champaign, IL, American oil Chemists’ Society, pp 8–87 (1998).

  27. H.K. Kantilal, (2009). https://www.abdchlorella.com/index.php/chlorella-facts/clinical-reports.html/Accessed 15 November 2019

  28. N.A. Al-Dhabi, Saudi. J. Biol. Sci. 20, 383–388 (2013)

    CAS  Google Scholar 

  29. W. Abdelmoez, R. Abdelfatah, Therapeutic compounds from plants using subcritical water technology. In: Water extraction of bioactive compounds, 51–68, Elsevier, United States, (2017).

  30. J. Prarthana, K.R. Maruthi, Asian. J. Sci. Res. 12, 18–28 (2018). https://doi.org/10.3923/ajsr.2019.18.28

    Article  CAS  Google Scholar 

  31. D. Zielinski, J. Fraczyk, M. Debowski, M. Zielinski, Z.J. Kaminski, D. Kregiel, C. Jacob, B. Kolesinska, Molecules 25, 1–18 (2020). https://doi.org/10.3390/molecules25081790

    Article  CAS  Google Scholar 

  32. N.H. Habashy, M.M.A. Serie, W.E. Attia, S.A. Abdelgaleil, J. Funct. Foods 40, 317–328 (2018). https://doi.org/10.1016/j.jff.2017.11.022

    Article  CAS  Google Scholar 

  33. G. Ozdemir, N.U. Karabay, M.C. Dalay, B. Pazarbasi, Phytother. Res. 18, 754–757 (2004). https://doi.org/10.1002/ptr.1541

    Article  CAS  PubMed  Google Scholar 

  34. V. J. Ama Moor, C. A. Pieme, P. N. Biapa, M. N. Matip, B. Moukette, F. T. Nzufo, P. Nanfack, J, Ngogang, Ann. Food Sci Technol. 17, 524–528 (2016)

  35. N. Tsighe, M. Wawire, A. Bereket, S. Karimi, I. Wainaina, J. Food Com. Anal. 70, 98–104 (2018). https://doi.org/10.1016/j.jfca.2018.05.001

    Article  CAS  Google Scholar 

  36. M. Durmus, A. Polat, M. Öz, Y. Ozogul, I. Ucak, J. Food Nutr. Res. 53, 344–352 (2014)

    CAS  Google Scholar 

  37. N. Gamez-Meza, I. Higuera-Ciapara, A.C. De La Barca, L. Vazquez-Moreno, J. Noriega-Rodriguez, O. Angulo-Guerrero, Lipids 34, 639–642 (1999)

    Article  CAS  Google Scholar 

  38. A. Benguendouz, K. Bouderoua, A. Bouterfa, M. Belabes, A. Bekada, E. Sioriki, I. Zabetakis, Iran J Fish Sci 16, 1021–1029 (2017)

    Google Scholar 

  39. N.M. Bandarra, A. Marçalo, A.R. Cordeiro, P. Pousão-Ferreira, Food Chem. 244, 408–413 (2018). https://doi.org/10.1016/j.foodchem.2017.09.147

    Article  CAS  PubMed  Google Scholar 

  40. C. Strobel, G. Jahreis, K. Kuhnt, Lipids Health Dis. 11, 1–10 (2012)

    Article  Google Scholar 

  41. M. Kenar, F. Özogul, E. Kuley, Int. J. Food Sci. Technol. 45, 2366–2372 (2010). https://doi.org/10.1111/j.1365-2621.2010.02414.x

    Article  CAS  Google Scholar 

  42. Y. Ozogul, D. Ayas, H. Yazgan, F. Ozogul, E.K. Boga, G. Ozyurt, Int. J. Food Sci. Technol. 45, 1717–1723 (2010). https://doi.org/10.1111/j.1365-2621.2010.02326.x

    Article  CAS  Google Scholar 

  43. A. Houicher, E. Kuley, B. Bendeddouche, F. Özogul, J. Food Protect. 76, 1719–1725 (2013). https://doi.org/10.4315/0362-028X.JFP-13-118

    Article  CAS  Google Scholar 

  44. H. Yazgan, A. Burgut, M. Durmus, A.R. Kosker, J. Food Safety 20, 1–10 (2020). https://doi.org/10.1111/jfs.12767

    Article  Google Scholar 

  45. P. Viji, S.K. Panda, C.O. Mohan, J. Bindu, C.N. Ravishankar, T.S. Gopal, J Food Sci. Technol. 53, 4289–4297 (2016). https://doi.org/10.1007/s13197-016-2425-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. J. Gracey, D.S. Collims, R. Huey, Meat Hygiene Saunders, 10th edn. P. 407. London: Harcourt Brace and Company (1999)

  47. A. Sarojini, C.V. Raju I.P. Lakshmisha A. Gajendra, J. Entomol. Zool. Stud. 7, 140–144 (2019)

  48. T. Lahreche, Y. Uçar, A.R. Kosker, T.M. Hamdi, F. Ozogul, Vet. World 12, 155–164 (2019). https://doi.org/https://doi.org/10.14202/vetworld.2019.155-164

  49. M.L. Nunes, I. Batista, R. Morao de Campos, J. Sci. Food Agric. 59, 37–43 (1992)

    Article  CAS  Google Scholar 

  50. K. Azam, M.Y. Ali, M. Asaduzzaman, M.Z. Basher, M.M. Hossain, Biochemical dynamics and the quality of fresh and frozen fish, in Fish Processing Technology. ed. by G.M. Hall (Blackie Academic and Professional publishers, London, UK, 2004), pp. 1–26

    Google Scholar 

  51. ICMSF, Microorganisms in Foods. Sampling for Microbiological Analysis: Principles and Scientific Applications, Toronto: University of Toronto Press. pp.181–196 (1986).

  52. W.A.E.F. Elshouny, M.M. El-Sheekh, S.Z. Sabae, M.A. Khalil, H.M. Badr, J. Microbiol. Biotechnol. Food Sci. 6, 1203–1208 (2017). https://doi.org/https://doi.org/10.15414/jmbfs.2017.6.5.1203-1208

  53. B. Chakraborty, R.P. Jayaswal, P.P. Pankaj, Int. J. Curr. Pharm. Rev. Res. 6, 212–214 (2015)

    Google Scholar 

  54. H.J. Hueck, D.M. Adema, J.R. Wiegmann, Appl. Environ. Microbiol. 14, 308–319 (1966)

    Article  CAS  Google Scholar 

  55. A. Mashhadinejad, H. Zamani, J. Sarmad, Pharm. Biomed. Res. 2, 65–73. (2016). https://doi.org/https://doi.org/10.18869/acadpub.pbr.2.4.65

  56. G.Z. de Caire, J.L. Parada, M.C. Zaccaro, M.M.S. de Cano, World J. Microbiol. Biotechnol. 16, 563–565 (2000)

    Article  Google Scholar 

  57. S. Scieszka, E. Klewicka, Foods 9, 1–12 (2020). https://doi.org/10.3390/foods9070959

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was financially supported by the Scientific Research Projects Unit of Cukurova University (FDK-2015-4059). The authors would like to thank for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlyas Özogul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

There is no involvement of any living being in the all experiments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özogul, İ., Kuley, E., Durmus, M. et al. The effects of microalgae (Spirulina platensis and Chlorella vulgaris) extracts on the quality of vacuum packaged sardine during chilled storage. Food Measure 15, 1327–1340 (2021). https://doi.org/10.1007/s11694-020-00729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00729-1

Keywords

Navigation