Skip to main content
Log in

Identification and quantification of volatile toxic compounds in tequila

  • Review Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Nitrosoamines (NAms), methanol and furfural are toxic compounds that are frequently found in low concentrations in alcoholic beverages and food products. NAms such as Nitrosodimethylamine, Nitrosodiethylamine, Nitrosodibutylamine, Nitrosopiperidine and Nitrosopyrrolidine are considered cancerogenic and mutagenic compounds whereas furfural and methanol can lead in skin cancer and eye damage respectively. Therefore, in this work these compounds were analyzed in tequila (white, rested and aged), which is an important and highly consumed beverage. The technique of headspace solid-phase micro-extraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used for its simplicity, speed, high precision and its environmental friendliness. The influence of the important extraction parameters such as temperature (Teq), equilibrium time (teq), extraction time and ionic strength was evaluated through a factorial analysis. The quantification was carried out using the standard additions method. In order to validate the methodology, the limits of detection and quantification were determined. Amongst the NAms, the NDBA was the only NAm detected in all the tequila samples studied. The maximum concentrations found of NDBA, furfural and methanol were 7.33 µg/L, 0.95 mg/100 mL anhydrous alcohol and 132.51 mg/100 mL anhydrous alcohol. These amounts were within the limits considered safe for human consumption by the Environmental Protection Agency and Mexican norms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Villanueva-Rodríguez, H. Escalonada-Buendía, Tequila and mezcal: sensory attributes and sensory evaluation. Alcohol. Beverages (2012). https://doi.org/10.1533/9780857095176.3.359

    Article  Google Scholar 

  2. M.C. Cedeño, Tequila production. Crit. Rev. Biotechnol. 15, 1–11 (1995)

    Article  PubMed  Google Scholar 

  3. Consejo Regulador del Tequila (CRT), Mexico (2017). https://www.crt.org.mx/. Accessed Nov 10 2017

  4. N. Mancilla-Margalli, M. López, Generation of maillard compounds from inulin during the thermal processing of Agave tequilana Weber Var. azul. Agric. Food Chem. 50(4), 806–812 (2002)

    Article  CAS  Google Scholar 

  5. Environmental Protection Agency (EPA) Announcement of Preliminary Regulatory Determinations for Contaminants on the Third Drinking Water Contaminant Candidate List [EPA-HQ-OW-2012–0155], USA, (2012). https://www.epa.gov/sites/production/files/2015-12/documents/reg_det_3_final_fr_notice_20151222_pre-pub508.pdf. Accessed Feb19 2020

  6. Environmental Protection Agency (EPA) , N-Nitroso-di-n-butylamine CASRN 924-16-3, USA, (1987). https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0037_summary.pdf. Accessed Feb 19 2020

  7. H. Andresen, H. Schmoldt, J. Matschke, F. Flachskampf, E. Turk, Fatal methanol intoxication with different survival times-morphological findings and postmortem methanol distribution. Forensic Sci. Int. 179(2), 206–210 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. M. Geroyiannaki, M. Komaitis, D. Stavrakas, M. Polysiou, P. Athanasopoulos, M. Spanos, Evaluation of acetaldehyde and methanol in greek traditional alcoholic beverages from varietal fermented grape pomaces (Vitisvinifera L.). Food Control 18(8), 988–995 (2007)

    Article  CAS  Google Scholar 

  9. M. Taheri, H. Moghaddam, Y. Moharamzad, S. Dadgari, V. Nahvi, The value of brain CT findings in acute metanol toxicity. Eur. J. Radiol. 73(2), 211–214 (2010)

    Article  PubMed  Google Scholar 

  10. G. Marcotullio, W. Jong, Furfural formation from D-xylose: the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields. Carbohydr. Res. 346(11), 1291–1293 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. G. Gupta, A. Misra, D. Agarwal, Inhalation toxicity of furfural vapours: an assessment of biochemical response in rat lungs. J. Appl. Toxicol. 5(5), 343–347 (1991)

    Article  Google Scholar 

  12. Normas oficiales Mexicanas, NOM-006-SCFI-2012, Mexico, (2012). https://www.crt.org.mx/images/Documentos/NOM-006-SCFI-2005.pdf. Accessed April 12 2018

  13. J. Pawliszyn, Solid phase microextraction: theory and practice (Wiley, New York, 1997)

    Google Scholar 

  14. A. Piñeiro-García, G. González-Alatorre, S.M. Vega-Díaz et al., Reduced graphene oxide coating with high performance for the solid phase micro-extraction of furfural in espresso coffee. J. Food Meas. Charact. (2019). https://doi.org/10.1007/s11694-019-00293-3

    Article  Google Scholar 

  15. E. Mitacek, K. Brunnemann, M. Suttajit, M. Martin, T. Limsila, H. Oshima, L. Caplan, Exposure to N-nitrosocompounds in a population of high liver cancer regions in Thailand: volatile nitrosamine (VNA) levels in Thai food. Food Chem. Toxicol. 37(4), 297–305 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. M. Glória, J. Barbour, R. Scanlan, Volatile nitrosamines in fried bacon. J. Agric. Food Chem. 45(5), 1816–1818 (1997)

    Article  Google Scholar 

  17. F. Reche, M. Garrigós, M. Marín, A. Cantó, A. Jiménez, Optimization of parameters for the supercritical fluid extraction in the determination of nitrosamines in rubbers. J. Chromatogr. A 963(1), 419–426 (2002)

    Article  CAS  Google Scholar 

  18. S. Yurchenko, U. Molder, N-nitrosodimethylamine analysis in Estonian beer using positive-ion chemical ionization with gas chromatography mass spectrometry. Food Chem. 89(3), 455–463 (2005)

    Article  CAS  Google Scholar 

  19. M. Qiang, X. Hai-Wei, W. Chao, B. Hua, X. Guang-Cheng, S. Ning, X. Li-Yan, W. Jun-Bing, Determination of ten volatile nirosamines in cosmetics by gas chromatography tandem mass spectrometry. Chin. J. Anal. Chem. 39(8), 1201–1207 (2011)

    Article  Google Scholar 

  20. D. Méndez, G. González, E. Botello, E. Escamilla, J. Alvarado, Solid-phase microextraction of N-nitrosodimethylamine in beer. Food Chem. 107(3), 1348–1352 (2008)

    Article  Google Scholar 

  21. F. Lona-Ramirez, G. Gonzalez-Alatorre, V. Rico-Ramirez, M. Perez-Perez, E. Castrejon-Gonzalez, Gas chromatography/mass spectrometry for the determination of nitrosamines in red wine. Food Chem. 196, 1131–1136 (2015)

    Article  PubMed  Google Scholar 

  22. S. Ventanas, D. Martin, M. Estevez, J. Ruiz, Analysis of volatile nitrosamines from a model system using SPME-DED at different temperatures and times of extraction. Food Chem. 99(4), 842–850 (2006)

    Article  CAS  Google Scholar 

  23. R. Andrade, F. Reyes, S. Rath, A method for the determination of volatile N-nitrosamines in food by HS_SPME_GC_TEA. Food Chem. 91, 173–179 (2005)

    Article  CAS  Google Scholar 

  24. Official Journal of the European Union, Publication of an application pursuant to Article 17(6) of Regulation (EC) No 110/2008 of the European Parliament and of the Council of on the definition, description, presentation, labelling and the protection of geographical indications of spirit drinks and repealing Council Regulation (EEC) No 1576/89, (2016). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016XC0714(01)&from=EN. Accessed Feb19 2020

  25. C. Bauer-Christoph, N. Christoph, B.O. Aguilar-Cisneros, M.G. López, E. Richling, A. Rossmann, P. Schreier, Authentication of tequila by gas chromatography and stable isotope ratio analyses. Eur. Food Res. Technol. 217(5), 438–443 (2003)

    Article  CAS  Google Scholar 

  26. X. Lee, T. Kumazawa, K. Kondo, K. Sato, O. Suzuki, Analysis of methanol or formic acid in body fluids by headspace solid-phase microextraction and capillary gas chromatography. J. Chromatogr. B 734, 155–162 (1999)

    Article  CAS  Google Scholar 

  27. F. Fortunato, M. Bechlin, J. Gomes, G. Donati, B. Jones, Internal standard addition calibration: determination of calcium and magnesium by atomic absorption spectrometry. Microchem. J. 122, 63–69 (2015)

    Article  CAS  Google Scholar 

  28. A. Muñoz-Muñoz, A. Grenier, H. Gutiérrez-Pulido, J. Cervantes-Martínez, Development and validation of a high performance liquid chromatography-diode array detection methods for the determination of aging markers in tequila. J. Chromatogr. A 1213, 218–223 (2008)

    Article  PubMed  Google Scholar 

  29. M. Wang, J. Wang, Y. Choong, Simultaneous quantification of methanol and ethanol in alcoholic beverage using a rapid gas chromatographic methods coupling with dual internal standards. Food Chem. 86(4), 609–615 (2004)

    Article  CAS  Google Scholar 

  30. M. Li, Z. Yang, M. Yang, L. Shan, J. Dong, Determination of furfural in beer by high-performance liquid chromatography with solid-phase extraction. J. Inst. Brew. 115, 226–231 (2009)

    Article  CAS  Google Scholar 

  31. S. Herrmann, K. Granby, L. Duedahl-Olesen, Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chem. 174, 516–526 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. M. Wang, J. Wang, Y. Choong, A rapid and accurate method for determination of methanol in alcoholic beverage by direct injection capillary gas chromatography. J. Food Compos. Anal. 17, 187–196 (2004)

    Article  CAS  Google Scholar 

  33. A. Muñoz-Muñoz, J. Pichardo-Molina, G. Ramos-Ortiz, O. Barbosa-Garcia, J. Maldonado, M. Meneses-Nava, N. Ornelas-Soto, A. Escobedo, P. Lopez-de-Alba, Identification and quantification of furanic compounds in tequila and mescal using spectroscopy and chemometric methods. J. Braz. Chem. Soc. 21(6), 1077–1087 (2010)

    Article  Google Scholar 

  34. V. Pereira, F. Albuquerque, A. Ferreira, J. Cacho, J. Marques, Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions. Food Res. Int. 44(1), 71–76 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank CONACYT (The National Council of Science and Technology) for the financial support awarded to doctoral student Fernando Jonathan Lona Ramírez (Grant No. 344837), master student Susana Ramirez Guizar (Grant No. 331190) and to doctoral student Alexis Piñeiro García (Grant No. 465629) to carry out this study. Likewise, thanks are extended to TNM (Tecnológico Nacional de México) for providing the funding required for this Project (5948.16-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Jonathan Lona-Ramírez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Guízar, S., González-Alatorre, G., Pérez-Pérez, M.C.I. et al. Identification and quantification of volatile toxic compounds in tequila. Food Measure 14, 2059–2066 (2020). https://doi.org/10.1007/s11694-020-00452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00452-x

Keywords

Navigation