Skip to main content
Log in

Physicochemical, thermal, rheological and morphological characteristics of flour and starch from a non-conventional source: Cucurbita foetidissima Kunth roots

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Starch is a biopolymer which demand has increased because of its multiple industrial applications. The present work was performed to characterize, both flour and starch obtained from Cucurbita foetidissima root as a non-conventional source. According to its physicochemical, rheological (flow curves), thermal and morphological properties. The flour was composed of a 77% total of carbohydrates, and the isolated starch showed 88% purity. Granules found in both samples exhibited birefringence and mixed morphology. Particle size distribution varied from 1 to 35 µm for flour and from 1 to 29 µm for starch. The k and n indices from their evaluated suspensions at 25, 50 and 70 °C indicated a non-Newtonian behavior of pseudoplastic type for both materials. Gelatinization temperature was 63.58 ± 3.08 °C with ΔH = 5.64 ± 3.81 J/g for flour, and of 66.50 ± 0.06 °C with ΔH = 12.27 ± 0.17 J/g for starch. XRD patterns were mixed A and B, characteristic of cereal starches and rubbers, with changes in the crystallinity percentage with each other. These materials characteristics are similar to those of other sources such as cassava (Manihot esculenta), but different from cereals as corn (Zea mays), and other tubers, as potato (Solanum tuberosum).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Agama-Acevedo, E. Juárez-García, S. Evangelista-Lozano, O.L. Rosales-Reynoso, L.A. Bello-Pérez, Agrociencia 47(1), 1–12 (2013)

    Google Scholar 

  2. L.A. Bello-Perez, O. Paredes-Lopez, P. Roger, P. Colonna, P. Food Chem. 56(2), 171–176 (1996)

    CAS  Google Scholar 

  3. G. Sandoval, M. Álvarez, M. Paredes, A. Lascano, Sci. Agropecu. 2, 123–131 (2012)

    Google Scholar 

  4. P. Torres, A. Pérez, L.F. Marmolejo, J.A. Ordóñez, R.E. García, Revista EIA 14, 23–38 (2010)

    CAS  Google Scholar 

  5. C.D. Grande Tovar, B.S. Orozco Colonia, Rev. Guillermo Ockham 1(1), 97–110 (2013)

    Google Scholar 

  6. S. Srichuwong, D. Curti, S. Austin, R. King, L. Lamothe, H. Gloria-Hernandez, Food Chem. 233, 1–10 (2017)

    CAS  PubMed  Google Scholar 

  7. R. Bajaj, N. Singh, A. Kaur, J. Food Sci. Technol. 56(2), 1046–1055 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Edhirej, S.M. Sapuan, M. Jawaid, N.I. Zahari, Starch/Stärke 68, 1–11 (2016)

    Google Scholar 

  9. L. Chel-Guerrero, E. Barbosa-Martín, A. Martínez-Antonio, E. González-Mondragón, D. Betancur-Ancona, Int. J. Biol. Macromol. 86, 302–308 (2016)

    CAS  PubMed  Google Scholar 

  10. G. Pascual-Chagman, J. Zapata-Huamán, Rev. Soc. Quím. Perú. 76(4), 377–388 (2010)

    Google Scholar 

  11. M.L. Dreher, J.W. Berry, Starch-Stärke 35(3), 76–81 (1983)

    CAS  Google Scholar 

  12. R. R. Lira-Saade, L. Eguiarte-Fruns, S. Montes-Hernández. Compilation and analysis of the existing information of the species of the genera Cucurbita and Sechium that grow and/or are cultivated in Mexico (Universidad Nacional Autónoma de México, 1st. report, 2009) https://www.biodiversidad.gob.mx/genes/centrosOrigen/Cucurbita%20y%20Sechium/1er_Informe/Primer%20informe%20Cucurbita%20y%20Sechium.pdf. Accessed 24 April 2018.

  13. P.J. Silva, P. Malebran, M.E. Fernández, M. Calebota, M. Escaff, J.A. Jaro, Simiente. 53(3), 110–120 (1983)

    Google Scholar 

  14. D. Granados-Sánchez, G.F. López-Ríos, Rev. Chapingo Ser. Cienc. For. Ambient. 5(1), 35–40 (1999)

    Google Scholar 

  15. M.L. Dreher, A.M. Tinsley, J.C. Scheerens, J.W. Berry, Starch-Stärke 35(5), 157–162 (1983)

    CAS  Google Scholar 

  16. J.S. DeVeaux, E.B. Shultz, Econ. Bot. 39(4), 454–472 (1985)

    Google Scholar 

  17. L.E. Butler, D.D. Christianson, J.C. Scheerens, J.W. Berry, Starch/Stärke 38(5), 156–159 (1986)

    CAS  Google Scholar 

  18. R. Hoover, Carbohyd. Polym. 45(3), 253–267 (2001)

    CAS  Google Scholar 

  19. D. Zhang, F.T. Halaweish, Plant Sci. 164, 387–393 (2003)

    CAS  Google Scholar 

  20. G. Gaidi, T. Miyamoto, H. Lerche, M.A. Lacaille-Dubois, Helv. Chim. Acta 87, 1158–1166 (2004)

    CAS  Google Scholar 

  21. S. Man, W. Gao, Y. Zhang, L. Hueng, Ch Liu, Fitoterapia 81, 703–714 (2010)

    CAS  PubMed  Google Scholar 

  22. Universidad Autónoma Agraria Antonio Narro. Campos experimentales (UAAAN, 2011) https://www.uaaan.mx/investigacion/comeaa/Campos_Experimentales_2011.pdf. Accessed 18 July 2018.

  23. J.M. Tirado-Gallegos, P.B. Zamudio-Flores, J.D.E.J. Ornelas-Paz, C. Ríos-Velasco, C.O. Acosta-Muñiz, F. Gurtiérrez-Meraz, J. Islas-Hernández, R. Salgado-Delgado, Rev. Mex. Ing. Quím. 15(2), 391–408 (2016)

    CAS  Google Scholar 

  24. G.W. Latimer, Official Methods of Analysis of AOAC International (No. 543/L357) (AOAC International, Rockville, 2012)

    Google Scholar 

  25. R.S. Hunter, J. Opt. Soc. Am. 48, 985–995 (1958)

    Google Scholar 

  26. J.E. Mano, D. Koniarova, R.L. Reis, J. Mater. Sci. Mater. Med. 14, 127–135 (2003)

    CAS  PubMed  Google Scholar 

  27. AACC (American Association of Cereals Chemists). Approved Methods of the AACC (AACC, St. Paul, 2000)

  28. I.C.F. Moraes, R.A. Carvalho, A.M.Q.B. Bittante, J. Solorza-Feria, J.A. Sobral, J. Food Eng. 95(4), 588–596 (2009)

    CAS  Google Scholar 

  29. O. Paredes-López, L.A. Bello-Pérez, M.G. López, Food Chem. 50(4), 411–417 (1994)

    Google Scholar 

  30. M. Cobana, R. Antezana, Rev. Bol. Quim. 24(1), 77–83 (2007)

    Google Scholar 

  31. C. Palomino, Y. Molina, E. Pérez, Rev. Fac. Agron. 36(2), 58–66 (2010)

    Google Scholar 

  32. H. Castaño-Peláez, M. Cardona-Betancur, C. Mejía-Gómez, A. Acosta-Cárdenas, Dyna 78(169), 158–166 (2011)

    Google Scholar 

  33. J. Alonso, C.J. García-Jarquín, K. González-Lindo, M. Benavente, Nexo Rev. Cient. 27(2), 99–114 (2014)

    Google Scholar 

  34. N. Charoenkul, D. Uttapap, W. Pathipanawat, Y. Takeda, LWT Food Sci Technol. 44, 1774–1781 (2011)

    CAS  Google Scholar 

  35. Y.M. Toro, M. Guerra, C. Espinosa, A. Newman, An. Venez. Nutr. 4(1), 27–33 (2011)

    Google Scholar 

  36. J. Rożnowski, B. Przetaczek-Rożnowska, Starch/Stärke 68, 1–8 (2016)

    Google Scholar 

  37. H.A. Acosta, H.S. Villada, G.A. Torres, J.G. Ramírez, Inf. Technol. 17(3), 63–70 (2006)

    Google Scholar 

  38. J.H. Mina, A. Valadez, P.J. Herrera-Franco, T. Toledano, Ingeniería y competitividad. 11(2), 53–61 (2009)

    Google Scholar 

  39. M. Hernández-Medina, J.G. Torruco-Uco, L. Chel-Guerrero, D. Betancur-Ancona, Ciênc. Tecnol. Alim. 28(3), 718–726 (2008)

    Google Scholar 

  40. L. Copeland, J. Blazek, H. Salman, M.C. Tang, Food Hydrocoll. 23, 1527–1534 (2009)

    CAS  Google Scholar 

  41. P. Vargas-Aguilar, D. Hernández-Villalobos, Tecnología en marcha. 26(1), 37–45 (2013)

    Google Scholar 

  42. M.A. Rao, J. Tattiyakul, Carbohydr. Polym. 38, 123–132 (1999)

    CAS  Google Scholar 

  43. D.G. Stevenson, J.-L. Jane, G. Inglett, Strch/Stärke 59, 132–140 (2007)

    CAS  Google Scholar 

  44. E. Agama-Acevedo, A.P. Barba-de la Rosa, G. Méndez-Montealvo, L.A. Bello-Pérez, Starch/Stärke 60, 433–441 (2008)

    CAS  Google Scholar 

  45. N. Lindeboom, P.R. Chang, R. Tyler, Starch/Stärke 56, 89–99 (2004)

    CAS  Google Scholar 

  46. J. Waterschoot, S.V. Gomand, E. Fierens, J.A. Delcour, Starch/Stärke. 66, 1–13 (2014)

    Google Scholar 

  47. Z. Dai, Y. Li, H. Zhang, S. Yan, W. Li, Starch/Stärke 68, 454–461 (2016)

    CAS  Google Scholar 

  48. J.A. Medina, J.C. Salas, J.C. Rev, Ing. 27, 56–62 (2008)

    Google Scholar 

  49. R. Asmeda, A. Noorlaila, M.H. Norziah, Food Chem. 191, 45–51 (2016)

    CAS  PubMed  Google Scholar 

  50. J. Waterschoot, S.V. Gomand, J.A. Delcour, Foods Hydrocoll. 52, 69–77 (2016)

    CAS  Google Scholar 

  51. K. Seetharaman, A. Tziotis, F. Borras, P.J. White, M. Ferrer, J. Robutti, Cereal Chem. 78(4), 379–386 (2001)

    CAS  Google Scholar 

  52. E.D. Narváez-González, J.D.C. Figueroa, S. Taba, E.T. Castaño, R. Martínez-Peniche, Rev. Fitotec. Mex. 30(3), 269–277 (2007)

    Google Scholar 

  53. H. Chi, K. Xu, D. Xue, C. Song, W. Zhang, P. Wang, Food Res. Int. 40, 232–238 (2007)

    CAS  Google Scholar 

  54. A. Marti, J.E. Bock, M.A. Pagani, B. Ismail, K. Seetharaman, Food Chem. 194, 994–1002 (2016)

    CAS  PubMed  Google Scholar 

  55. L. Kumar, M. Brennan, H. Zheng, C. Brennan, Food Chem. 245, 518–524 (2018)

    CAS  PubMed  Google Scholar 

  56. L. Sívoli, E. Pérez, P. Rodríguez, Rev. Fac. Agron. (LUZ). 29, 293–313 (2012)

    Google Scholar 

  57. J.P. Hernández-Uribe, E. Agama-Acevedo, R.A. González-Soto, L.A. Bello-Pérez, A. Vargas-Torres, Starch/Stärke 63, 32–41 (2011)

    Google Scholar 

  58. D. Enríquez-Castillo, J. Sánchez-González, P. Castro-Santander, Agroind. Sci. 2, 173–180 (2012)

    Google Scholar 

  59. M.G. Casarrubias-Castillo, G. Méndez-Montealvo, S.L. Rodríguez-Ambriz, S.L. Sánchez-Rivera, L.A. Bello-Pérez, Agrociencia. 46, 455–466 (2012)

    Google Scholar 

  60. H. Ibrahim, M. Farag, H. Megahed, S. Mehanny, Carbohyd. Polym. 101, 11–19 (2014)

    CAS  Google Scholar 

  61. P.B. Zamudio-Flores, J.M. Tirado-Gallegos, J.G. Monter Miranda, A. Aparicio-Saguilan, J.G. Torruco-Uco, R. Salgado-Delgado, L.A. Bello-Perez, Rev. Mex. Ing. Quím. 14(1), 81–97 (2015)

    CAS  Google Scholar 

  62. P. Pineda-Gómez, D.F. Coral, D. Ramos-Rivera, A. Rosales-Rivera, Ing. Cienc. 7(14), 119–142 (2011)

    Google Scholar 

  63. E. Chiotelli, M. Le Meste, Cereal Chem. 79(2), 286–293 (2002)

    CAS  Google Scholar 

  64. A. Alvis, C.A. Vélez, H.S. Villada, M. Rada-Mendoza, Inf. Tecnol. 19(1), 19–28 (2008)

    CAS  Google Scholar 

  65. B.C. Maniglia, D.R. Tapia-Blácido, Foods Hydrocoll. 55, 47–55 (2016)

    CAS  Google Scholar 

  66. A.H. Ramos, B.A. Rockenbach, C.D. Ferreira, L.C. Gutkoski, M. de Oliveira, Starch/Stärke 71, 1–8 (2019)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Ing. E. Rivera-Andrade (UAAAN), Ing. C. Y. Amador-Llanas (UAAAN), M.Sc. E. G. González-Armendáriz (CIAD, A.C.) and M.Sc. E. Ochoa-Reyes (CIAD, A.C.) for the technical support provided in this work. The present study is a product of the Research Group in Carbohydrates, Packaging and Functional Foods (CEAF-Laboratory) of the CIAD-Cuauhtemoc, Chihuahua, Mexico, led by Dr. Paul Baruk Zamudio Flores.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Baruk Zamudio-Flores.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Research involving human and animal participants

The study does not involve any human or animal testing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Centeno, F., López-De la Peña, H.Y., Hernández-González, M. et al. Physicochemical, thermal, rheological and morphological characteristics of flour and starch from a non-conventional source: Cucurbita foetidissima Kunth roots. Food Measure 14, 1976–1985 (2020). https://doi.org/10.1007/s11694-020-00444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00444-x

Keywords

Navigation