Skip to main content
Log in

Functional and physicochemical properties of Durian seed flour blended with cassava starch

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Durian (Durio zibethinus Murr.) seed flour (DSF) has very soft gel with high syneresis. Blending it with cassava starch (CS) could deliver strongly advantageous effects. The objective of this work was to investigate the functional and physicochemical properties of blends of CS and DSF. Experimentally, commercial cassava starch CS (18.18 ± 0.11% amylose) was blended with DSF (containing 55.44 ± 4.93% gum and 14.62 ± 0.07% amylose) in various CS/DSF ratios: 100/0, 90/10, 80/20, 70/30, 60/40, 50/50, 40/60, 30/70, 20/80, 10/90, and 0/100 by dry weight. The key properties of those blends were investigated, namely swelling power (SP), solubility, pasting properties by the Rapid Visco Analyzer (RVA), gelatinization temperature, and gel texture and syneresis. CS showed lower SP at 60 °C, but higher SP at 75 and 90 °C than DSF, while DSF had higher solubility than CS at all temperatures tested. The blends had SP and solubility between these extremes. RVA viscosities for all ratios of the CS/DSF blends were often below those of the individual components, with DSF influencing more than expected from its proportion. The peak viscosity (PV) of CS was significantly higher than that of DSF (3955 ± 37 vs. 1918 ± 17 mPa.s). The PV of CS/DSF blends with 10/90–60/40 ratios was slightly different from that of DSF, but increased strongly for the 70/30- 90/10 ratios. As regards gelatinization, CS had lower temperature range (62.66 ± 0.13–72.06 ± 0.21 °C,) than DSF (67.50 ± 0.55–79.35 ± 0.16 °C), while its enthalpy was higher (12.83 ± 0.81 vs. 5.38 ± 0.16 J/g). All the blends showed higher gelatinization temperature than CS but lower than DSF and their enthalpies had the opposite trend. Regarding the gel properties, gel hardness of CS was about five-fold higher than that of DSF (50.9 ± 30.27 vs. 9.59 ± 0.67, p < 0.05), while syneresis of CS was much lower (1.61 ± 0.33 vs. 58.30 ± 0.44%, p < 0.05) than of DSF. For their blends, it turned out that gel hardness increased and syneresis decreased with CS content in the blend. The gel hardness was synergistic for 90/10 and 80/20 ratios with about 50% increase over the pure components, and simultaneously the syneresis relative to plain DSF was reduced by over 50%. The results suggested that improved DSF properties can be achieved by blending with CS, and also a small amount of DSF (10–20%) has synergistic effect on gel hardness of the blend. Gum in the DSF plays an important role in the continuous phase of the paste and the gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.M. Amin, A.S. Ahmad, Y.Y. Yin, N. Yahya, N. Ibrahim, Food Hydrocoll. 21(2), 273–279 (2007)

    CAS  Google Scholar 

  2. M. Belgis, C.H. Wijaya, A. Apriyantono, B. Kusbiantoro, N.D. Yuliana, Int. Food Res. J. 23(4), 1466–1473 (2016)

    CAS  Google Scholar 

  3. B.T. Amid, H. Mirhosseini, Food Biophys. 7(4), 317–328 (2012)

    Google Scholar 

  4. B.T. Amid, H. Mirhosseini, Food Chem. 132, 1258–1268 (2012)

    CAS  PubMed  Google Scholar 

  5. B.T. Amid, H. Mirhosseini, Carbohydr. Polym. 90(1), 452–461 (2012)

    CAS  PubMed  Google Scholar 

  6. B.T. Amid, H. Mirhosseini, S. Kostadinović, Chem. Cent. J. 6(1), 117 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. A.M. Amin, R. Arshad, Int. J. Post. Tech. Innov. 1(4), 367–375 (2009)

    Google Scholar 

  8. S. Baraheng, T. Karrila, Food Biosci. (2019). https://doi.org/10.1016/j.fbio.2019.100412

    Article  Google Scholar 

  9. M. Chaisawang, M. Suphantharika, Food Hydrocoll. 20(5), 641–649 (2006)

    CAS  Google Scholar 

  10. J. Waterschoot, S.V. Gomand, E. Fierens, J.A. Delcour, Starch-Stärke 67(1–2), 1–13 (2015)

    CAS  Google Scholar 

  11. L.B. Karam, M.V.E. Grossmann, R.S.S.F. Silva, C. Ferrero, N.E. Zaritzky, Starch/Stärke 57(2), 62–70 (2005)

    CAS  Google Scholar 

  12. N.J. Tonukari, Electron. J. Biotechnol. 7(1), 5–6 (2004)

    Google Scholar 

  13. A.J. Gunorubon, D.K. Kekpugile, Int. J. Eng. Technol. 2(6), 913–919 (2012)

    Google Scholar 

  14. Y. Yao, J. Zhang, J.X. Ding, J. Food Sci. 68, 260–265 (2003)

    CAS  Google Scholar 

  15. M. Obanni, J.N. BeMiller, Cereal Chem. 74, 431–436 (1997)

    CAS  Google Scholar 

  16. V. Sae-kang, M. Suphantharika, Carbohydr. Polym. 65, 371–380 (2006)

    CAS  Google Scholar 

  17. J. Muadklay, S. Charoenrein, Food Hydrocoll. 22, 1268–1272 (2008)

    CAS  Google Scholar 

  18. H.-M. Chen, X. Fu, Z.-G. Luo, Food Hydrocoll. 51, 355–360 (2015)

    CAS  Google Scholar 

  19. T. Temsiripong, R. Pongsawatmanit, S. Ikeda, K. Nishinari, Food Hydrocoll. 19, 1054–1063 (2005)

    CAS  Google Scholar 

  20. P. Hongsprabhas, K. Israkarn, C. Rattanawattanaprakit, Carbohydr. Polym. 67, 614–622 (2007)

    CAS  Google Scholar 

  21. R. Pongsawatmanit, S. Srijunthongsiri, J. Food Eng. 88(1), 137–143 (2008)

    CAS  Google Scholar 

  22. M. Sikora, S. Kowalski, P. Tomasik, Food Hydrocoll. 22, 943–952 (2008)

    CAS  Google Scholar 

  23. C.-H. Chen, W.-S. Kuo, L.-S. Lai, Food Hydrocoll. 23, 2132–2140 (2009)

    CAS  Google Scholar 

  24. S. Shanavas, S.N. Moorthy, M.S. Sajeev, R.S. Misra, A.S. Sundazeem, Trends Carbohydr. Res. 2, 11–22 (2010)

    CAS  Google Scholar 

  25. N.J. BeMiller, Carbohydr. Polym. 86, 386–423 (2011)

    CAS  Google Scholar 

  26. K. Mahmood, H. Kamilah, P.L. Shang, S. Sulaiman, F. Ariffin, A.K. Alias, Food Biosci. 19, 110–120 (2017)

    CAS  Google Scholar 

  27. T. Tongdang, Starch/Stärke 60(3–4), 199–207 (2008)

    CAS  Google Scholar 

  28. B.V. McCleary, T.S. Gibson, D.C. Mugford, J. AOAC Int. 80, 571–579 (1997)

    CAS  Google Scholar 

  29. AOAC, Official Methods of Analysis. 950.46 (AOAC Press, Washington, DC, 2000)

  30. T.S. Gibson, V.A. Solah, B.V.A. McCleary, J. Cereal Sci. 25(2), 111–119 (2007)

    Google Scholar 

  31. Y. Takeda, S. Hizukuri, C. Takeda, A. Suzuki, Carbohydr. Res. 165, 139–145 (1987)

    CAS  Google Scholar 

  32. N. Singh, J. Singh, L. Kaur, N.S. Sodhi, B.S. Gill, Food Chem. 81, 219–231 (2003)

    CAS  Google Scholar 

  33. J.Y. Li, A.I. Yeh, J. Food Eng. 50(3), 141–148 (2001)

    Google Scholar 

  34. X. Kong, J. Bao, H. Corke, Food Chem. 113, 371–376 (2009)

    CAS  Google Scholar 

  35. L. Wang, B. Xie, J. Shi, J. Xue, Q. Deng, Y. Wei, B. Tian, Food Hydrocoll. 24, 208–216 (2010)

    CAS  Google Scholar 

  36. M. A. Razali, F. Abd Hakim, A A. Ngelambong, N. A. Zakaria, H. K. R. Khan, H. K. R. Proceedings of the Asia-Euro Conference, (Subang Jaya, Malaysia, November 24-26, 2010)

  37. M. Cornelia, T. Siratantri, R. Prawita, Proc. Food Sci. 3, 1–18 (2015)

    Google Scholar 

  38. M. Alloncle, J.L. Doublier, Food Hydrocoll. 5, 455–467 (1991)

    CAS  Google Scholar 

  39. A.M. Hermansson, K. Svegmark, Trends Food Sci. Technol. 71, 345–353 (1996)

    Google Scholar 

  40. W.A. Atwell, L.F. Hood, D.R. Lineback, E.V. Marston, H.F. Zobel, Cereal Foods World 33, 306–311 (1988)

    Google Scholar 

  41. T.E. Leite, J.F. Nicoleti, A.L.B. Penna, C.M.L. Frannco, Ciênc. Tecnol. Aliment. 32(3), 579–587 (2012)

    Google Scholar 

  42. S. Satrapai, M. Suphantharika, Carbohydr. Polym. 67, 500–510 (2007)

    CAS  Google Scholar 

  43. S. Khanna, R.F. Tester, Food Hydrocoll. 20, 567–576 (2006)

    CAS  Google Scholar 

  44. A.A. Karim, M.H. Norziah, C.C. Seow, Food Chem. 71, 9–36 (2000)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Halal Food Science Center, Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, (SAT581365S) and Graduate school Prince of Songkla University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taewee Karrila.

Ethics declarations

Conflict of interest

The authors declare that having they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leemud, P., Karrila, S., Kaewmanee, T. et al. Functional and physicochemical properties of Durian seed flour blended with cassava starch. Food Measure 14, 388–400 (2020). https://doi.org/10.1007/s11694-019-00301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00301-6

Keywords

Navigation