Skip to main content
Log in

Multi-dimensional fluorescence spectroscopy coupled with chemometrics in rapid antibiotic detection and discrimination

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Antibiotic residues in animal-derived foods pose risk to human health including chemical poisoning and antimicrobial resistance, and therefore, constant monitoring throughout the food supply chain is important. In the present study multi-dimensional fluorescence spectroscopy (3D and 2D) coupled with chemometric tools were tested for potential application to detect, discriminate and quantify penicillin G (PG), sulfadiazine (SF) and tetracycline (TC) in milk by direct measurement. Qualitative and quantitative calibration models were developed for prediction of antibiotic residues. Results demonstrated optimal discrimination of milk samples on the basis of antibiotic type and concentration with close to 100% of accuracy. Negative correlation between antibiotic concentration and fluorescence peak height was displayed (r ≥ 0.963 and p ≤ 0.002). A great potential for quantitative antibiotic determination was established with R2 > 0.9 and low standard errors of estimation indicating acceptable precision for the developed technique. Fluorescence spectroscopy demonstrated high specificity and sensitivity with detection limit below the maximum residue limit of PG, SF and TC in milk. Therefore, fluorescence spectroscopy can be used as an alternative method for rapid screening of antibiotic residues in milk at collection centers and processing plants to ensure product quality and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Khoshbin, A. Verdian, M. Housaindokht, M. Izadyar, Z. Rouhbakhsh, Biosens. Bioelectron. 122, 263 (2018)

    Article  CAS  Google Scholar 

  2. M.I. Berruga, A. Molina, R.L. Althaus, M.P. Molina, Small Rumin. Res. 142, 38 (2016)

    Article  Google Scholar 

  3. F. Conzuelo, V. Montiel, S. Campuzano, M. Gamella, R.M. Torrente-Rodríguez, A.J. Reviejo, J.M. Pingarrón, Anal. Chim. Acta 820, 32 (2014)

    Article  CAS  Google Scholar 

  4. N. Bilandžić, B. Kolanović, I. Varenina, G. Scortichini, L. Annunziata, M. Brstilo, N. Rudan, Food Control 22, 1941 (2011)

    Article  Google Scholar 

  5. P. Sanders, A. Bousquet-Melou, C. Chauvin, P.L. Toutain, INRA Prod. Anim. 24, 199 (2011)

    Article  CAS  Google Scholar 

  6. C.Y. Liu, Y.Y. Han, P.H. Shih, W.N. Lian, H.H. Wang, C.H. Lin, P.R. Hsueh, J.K. Wang, Y.L. Wang, Sci. Rep. 6, 23375 (2016)

    Article  CAS  Google Scholar 

  7. Z. Liu, Y. Zhong, Y. Hu, L. Yuan, R. Luo, D. Chen, M. Wu, H. Huang, Y. Li, Food Chem. 270, 573 (2019)

    Article  CAS  Google Scholar 

  8. Q. Wang, W.M. Zhao, Sens. Actuators B 269, 238 (2018)

    Article  CAS  Google Scholar 

  9. M. Kamal, R. Karoui, LWT Food Sci. Technol. 79, 586 (2017)

    Article  CAS  Google Scholar 

  10. M. Kamal, R. Karoui, Trends Food Sci. Technol. 46, 27 (2015)

    Article  CAS  Google Scholar 

  11. A. Siregar, S. Martono, A. Rohman, J. Appl. Pharm. Sci. 8, 151 (2018)

    CAS  Google Scholar 

  12. Y.J. Ju, N. Li, S.G. Liu, L. Han, N. Xiao, H.Q. Luo, N.B. Li, Sens. Actuators B 275, 244 (2018)

    Article  CAS  Google Scholar 

  13. G. Knothe, J.A. Kenar, Eur. J. Lipid Sci. Technol. 106, 88 (2004)

    Article  CAS  Google Scholar 

  14. M.P. Ntakatsane, X.M. Liu, P. Zhou, J. Dairy Sci. 96, 2130 (2013)

    Article  CAS  Google Scholar 

  15. M.P. Ntakatsane, X.M. Liu, P. Zhou, K.J. Mothibe, G.O. Adegoke, W.O. Odenya, J. Food Meas. Charact. 8, 1 (2014)

    Article  Google Scholar 

  16. E. Sikorska, A. Romaniuk, I.V. Khmelinskii, R. Herance, J.L. Bourdelande, M. Sikorski, J. Koziol, J. Fluoresc. 14, 25 (2004)

    Article  CAS  Google Scholar 

  17. C.M. Andersen, G. Mortensen, J. Agric. Food Chem. 56, 720 (2008)

    Article  Google Scholar 

  18. X.M. Liu, L.E. Metzger, J. Dairy Sci. 90, 24 (2007)

    Article  CAS  Google Scholar 

  19. N. Ayala, A. Zamora, C. Gonzalez, J. Saldo, M. Castillo, Food Control 73, 110–116 (2017)

    Article  CAS  Google Scholar 

  20. J. Calvarro, V. Gokmen, F.J. Morales, Eur. Food Res. Technol. 229, 843 (2009)

    Article  CAS  Google Scholar 

  21. S.B. Matiacevich, M.P. Buera, Food Chem. 95, 423 (2006)

    Article  CAS  Google Scholar 

  22. F.J. Morales, M.S.J.S. van Boekel, Int. Dairy J. 7, 675 (1997)

    Article  CAS  Google Scholar 

  23. A. Kulmyrzaev, E. Dufour, Lait 82, 725 (2002)

    Article  CAS  Google Scholar 

  24. J.P. Wold, K. Jorgensen, F. Lundby, J. Dairy Sci. 85, 1693 (2002)

    Article  CAS  Google Scholar 

  25. C. Brothersen, D.J. McMahon, J. Legako, S. Martini, J. Dairy Sci. 99, 2537 (2016)

    Article  CAS  Google Scholar 

  26. J.R. Lakowicz, Instrumentation for fluorescence spectroscopy, Principles of Fluorescence Spectroscopy (Springer, Boston, 1999)

    Chapter  Google Scholar 

  27. A. Kulmyrzaev, D. Levieux, E. Dufour, J. Agric. Food Chem. 53, 502 (2005)

    Article  CAS  Google Scholar 

  28. E. Dufour, M.F. Devaux, P. Fortier, S. Herbert, Int. Dairy J. 11, 465 (2001)

    Article  CAS  Google Scholar 

  29. R. Karoui, E. Dufour, J.D. Baerdemaeker, Food Chem. 101, 1305 (2007)

    Article  CAS  Google Scholar 

  30. E. Dufour, A. Riaublanc, Lait 77, 657 (1997)

    Article  CAS  Google Scholar 

  31. F. Zaïdi, H. Rouissi, S. Dridi, M. Kammoun, J. De Baerdemaeker, R. Karoui, Food Bioprocess Technol. 1, 143 (2008)

    Article  Google Scholar 

  32. M.S. Ammor, A.B. Flórez, A. Margolles, B. Mayo, Can. J. Microbiol. 52, 740 (2006)

    Article  CAS  Google Scholar 

  33. L.M. Casarrubias-Torres, O.G. Meza-Márquez, G. Osorio-Revilla, T. Gallardo-Velazquez, Acta Vet. Brno 87, 181 (2018)

    Article  Google Scholar 

  34. N. Rodríguez, M.C. Ortiz, L.A. Sarabia, A. Herrero, Anal. Chim. Acta 657, 136 (2010)

    Article  Google Scholar 

  35. E. Commission, Off. J. Eur. Union 1, L15 (2010)

    Google Scholar 

  36. O.G. Nagel, M.C. Beltrán, M.P. Molina, R.L. Althaus, Small Rumin. Res. 102, 26 (2012)

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from Jilin Provincial Science & Technology Development Plan under the International Science and Technology Cooperation Project entitled: Study on Rapid detection of Antibiotics in Milk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Chen.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntakatsane, M., Chen, P., Liu, J. et al. Multi-dimensional fluorescence spectroscopy coupled with chemometrics in rapid antibiotic detection and discrimination. Food Measure 14, 1892–1900 (2020). https://doi.org/10.1007/s11694-020-00436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00436-x

Keywords

Navigation