Skip to main content

Fluorescence Spectroscopy for the Monitoring of Food Processes

  • Chapter
  • First Online:
Measurement, Modeling and Automation in Advanced Food Processing

Abstract

Different analytical techniques have been used to examine the complexity of food samples. Among them, fluorescence spectroscopy cannot be ignored in developing rapid and non-invasive analytical methodologies. It is one of the most sensitive spectroscopic approaches employed in identification, classification, authentication, quantification, and optimization of different parameters during food handling, processing, and storage and uses different chemometric tools. Chemometrics helps to retrieve useful information from spectral data utilized in the characterization of food samples. This contribution discusses in detail the potential of fluorescence spectroscopy of different foods, such as dairy, meat, fish, eggs, edible oil, cereals, fruit, vegetables, etc., for qualitative and quantitative analysis with different chemometric approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANNs:

Artificial neural networks

ATP:

Adenosine triphosphate

CCA:

Canonical component analysis

CCSWA:

Common component specific weight analysis

DDT:

Dough development time

EEM:

Excitation emission matrix

FADH:

Flavin adenine dinucleotide

FDA:

Factorial discriminant analysis

FMN:

Flavin adenine mononucleotide

GLSW:

Generalized least square weighting

HCA:

Hierarchical cluster analysis

ICA:

Independent component analysis

LDA:

Linear discriminant analysis

LWR:

Locally weighted regression

NADH:

Nicotinamide adenine dinucleotide

N-PLS:

Multi-way partial least square regression

PARAFAC:

Parallel factor analysis

PCA:

Principal component analysis

PCR:

Principal component regression

PCs:

Principal components

PLS-DA:

Partial least square discriminant analysis

PLSR:

Partial least square regression

RPD:

Ratio of standard deviation to root mean square errors of cross-validation

SFS:

Synchronous fluorescence spectroscopy

SIMCA:

Soft independent modeling by class analogy

SNV:

Standard normal variate

TBA:

Thiobarbituric acid

TVC:

Total viable count

UHT:

Ultra high temperature

UV:

Ultra violet

References

  1. Christensen J, Nørgaard L, Bro R, Engelsen SB (2006) Multivariate autofluorescence of intact food systems. Chem Rev 106(6):1979–1994

    Article  CAS  Google Scholar 

  2. Karoui R, Blecker C (2011) Fluorescence spectroscopy measurement for quality assessment of food systems—a review. Food Bioprocess Technol 4(3):364–386

    Article  Google Scholar 

  3. Faassen S, Hitzmann B (2015) Fluorescence spectroscopy and chemometric modeling for bioprocess monitoring. Sensors 15(5):10271

    Article  CAS  Google Scholar 

  4. Lakowicz J (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  5. SádeCká J, TóThoVá J (2007) Fluorescence spectroscopy and chemometrics in the food classification – a review. Czech J Food Sci 25(4):159–173

    Google Scholar 

  6. Ahmad MH, Nache M, Hinrichs J, Hitzmann B (2016) Estimation of the nutritional parameters of various types of wheat flours using fluorescence spectroscopy and chemometrics. Int J Food Sci Technol 51(5):1186–1194

    Article  CAS  Google Scholar 

  7. Nache M, Scheier R, Schmidt H, Hitzmann B (2015) Non-invasive lactate- and pH-monitoring in porcine meat using Raman spectroscopy and chemometrics. Chemom Intell Lab Syst 142:197–205

    Article  CAS  Google Scholar 

  8. Andersen CM, Mortensen G (2008) Fluorescence spectroscopy: a rapid tool for analyzing dairy products. J Agric Food Chem 56(3):720–729

    Article  CAS  Google Scholar 

  9. Hassoun A, Karoui R (2017) Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: advantages and limitations. Crit Rev Food Sci Nutr 57(9):1976–1998

    Google Scholar 

  10. Karoui R, Kemps B, Bamelis F, de Ketelaere B, Merten K, Schoonheydt R, Decuypere E, de Baerdemaeker J (2006) Development of a rapid method based on front face fluorescence spectroscopy for the monitoring of egg freshness: 1—evolution of thick and thin egg albumens. Eur Food Res Technol 223(3):303–312

    Article  CAS  Google Scholar 

  11. Karoui R, Kemps B, Bamelis F, de Ketelaere B, Merten K, Schoonheydt R, Decuypere E, de Baerdemaeker J (2006) Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2—evolution of egg yolk. Eur Food Res Technol 223(2):180–188

    Article  CAS  Google Scholar 

  12. Guimet F, Ferré J, Boqué R, Rius F (2004) Application of unfold principal component analysis and parallel factor analysis to the exploratory analysis of olive oils by means of excitation–emission matrix fluorescence spectroscopy. Anal Chim Acta 515(1):75–85

    Article  CAS  Google Scholar 

  13. Sikorska E, Górecki T, Khmelinskii IV, Sikorski M, Kozioł J (2005) Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chem 89(2):217–225

    Article  CAS  Google Scholar 

  14. Lenhardt L, Bro R, Zeković I, Dramićanin T, Dramićanin MD (2015) Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. Food Chem 175:284–291

    Article  CAS  Google Scholar 

  15. Lenhardt L, Zekovic I, Dramicanin T, Dramicanin MD, Bro R (2014) Determination of the botanical origin of honey by front-face synchronous fluorescence spectroscopy. Appl Spectrosc 68(5):557–563

    Article  CAS  Google Scholar 

  16. Dufour É, Letort A, Laguet A, Lebecque A, Serra JN (2006) Investigation of variety, typicality and vintage of French and German wines using front-face fluorescence spectroscopy. Anal Chim Acta 563(1-2):292–299

    Article  CAS  Google Scholar 

  17. Sikorska E, Górecki T, Khmelinskii IV, Sikorski M, de Keukeleire D (2006) Monitoring beer during storage by fluorescence spectroscopy. Food Chem 96(4):632–639

    Article  CAS  Google Scholar 

  18. Sahar A, Boubellouta T, Portanguen S, Kondjoyan A, Dufour É (2009) Synchronous front-face fluorescence spectroscopy coupled with parallel factors (PARAFAC) analysis to study the effects of cooking time on meat. J Food Sci 74(9):E534–E539

    Article  CAS  Google Scholar 

  19. Dufour É, Frencia JP, Kane E (2003) Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of fish freshness. Food Res Int 36(5):415–423

    Article  CAS  Google Scholar 

  20. Zandomeneghi M, Carbonaro L, Caffarata C (2005) Fluorescence of vegetable oils: olive oils. J Agric Food Chem 53(3):759–766

    Article  CAS  Google Scholar 

  21. Karoui R, Cartaud G, Dufour E (2006) Front-face fluorescence spectroscopy as a rapid and nondestructive tool for differentiating various cereal products: a preliminary investigation. J Agric Food Chem 54(6):2027–2034

    Article  CAS  Google Scholar 

  22. Ruoff K, Luginbühl W, Künzli R, Bogdanov S, Bosset JO, von der Ohe K, von der Ohe W, Amadò R (2006) Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy. J Agric Food Chem 54(18):6858–6866

    Article  CAS  Google Scholar 

  23. Noh HK, Lu R (2007) Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality. Postharvest Biol Technol 43(2):193–201

    Article  Google Scholar 

  24. Karoui R, Dufour É, de Baerdemaeker J (2006) Front face fluorescence spectroscopy coupled with chemometric tools for monitoring the oxidation of semi-hard cheeses throughout ripening. Food Chem 101(3):1305–1314

    Article  CAS  Google Scholar 

  25. Zaïdi F, Rouissi H, Dridi S, Kammoun M, de Baerdemaeker J, Karoui R (2008) Front-face fluorescence spectroscopy as a rapid and non-destructive tool for differentiating between Sicilo–Sarde and Comisana ewe’s milk during lactation period: a preliminary study. Food Bioprocess Technol 1(2):143–151

    Article  Google Scholar 

  26. Hammami M, Rouissi H, Salah N, Selmi H, Al-Otaibi M, Blecker C, Karoui R (2010) Fluorescence spectroscopy coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems. Food Chem 122(4):1344–1350

    Article  CAS  Google Scholar 

  27. Karoui R, Hammami M, Rouissi H, Blecker C (2011) Mid infrared and fluorescence spectroscopies coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems. Food Chem 127(2):743–748

    Article  CAS  Google Scholar 

  28. Ntakatsane MP, Yang XQ, Lin M, Liu XM, Zhou P (2011) Short communication: suitability of fluorescence spectroscopy for characterization of commercial milk of different composition and origin. J Dairy Sci 94(11):5375–5380

    Article  CAS  Google Scholar 

  29. Hougaard AB, Lawaetz AJ, Ipsen RH (2013) Front face fluorescence spectroscopy and multi-way data analysis for characterization of milk pasteurized using instant infusion. LWT--Food Sci Technol 53(1):331–337

    Article  CAS  Google Scholar 

  30. Kulmyrzaev AA, Levieux D, Dufour É (2005) Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins. J Agric Food Chem 53(3):502–507

    Article  CAS  Google Scholar 

  31. Mungkarndee R, Techakriengkrai I, Tumcharern G, Sukwattanasinitt M (2016) Fluorescence sensor array for identification of commercial milk samples according to their thermal treatments. Food Chem 197(Part A):198–204

    Article  CAS  Google Scholar 

  32. Diez R, Ortiz MC, Sarabia L, Birlouez-Aragon I (2008) Potential of front face fluorescence associated to PLS regression to predict nutritional parameters in heat treated infant formula models. Anal Chim Acta 606(2):151–158

    Article  CAS  Google Scholar 

  33. Liu X, Metzger LE (2007) Application of fluorescence spectroscopy for monitoring changes in nonfat dry milk during storage. J Dairy Sci 90(1):24–37

    Article  CAS  Google Scholar 

  34. Karoui R, Dufour É (2006) Prediction of the rheology parameters of ripened semi-hard cheeses using fluorescence spectra in the UV and visible ranges recorded at a young stage. Int Dairy J 16(12):1490–1497

    Article  CAS  Google Scholar 

  35. Karoui R, Mouazen AM, Dufour E, Schoonheydt R, de Baerpemaeker J (2006) Utilisation of front-face fluorescence spectroscopy for the determination of some selected chemical parameters in soft cheeses. Lait 86(2):155–169

    Article  CAS  Google Scholar 

  36. Karoui R, Dufour E, Schoonheydt R, Baerdemaeker JD (2007) Characterisation of soft cheese by front face fluorescence spectroscopy coupled with chemometric tools: effect of the manufacturing process and sampling zone. Food Chem 100(2):632–642

    Article  CAS  Google Scholar 

  37. Kraggerud H, Næs T, Abrahamsen RK (2014) Prediction of sensory quality of cheese during ripening from chemical and spectroscopy measurements. Int Dairy J 34(1):6–18

    Article  CAS  Google Scholar 

  38. Kokawa M, Ikegami S, Chiba A, Koishihara H, Trivittayasil V, Tsuta M, Fujita K, Sugiyama J (2015) Measuring cheese maturation with the fluorescence fingerprint. Food Sci Technol Int 21(4):549–555

    CAS  Google Scholar 

  39. Dankowska A, Małecka M, Kowalewski W (2015) Detection of plant oil addition to cheese by synchronous fluorescence spectroscopy. Dairy Sci Technol 95(4):413–424

    Article  CAS  Google Scholar 

  40. Ntakatsane MP, Liu XM, Zhou P (2013) Short communication: rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy. J Dairy Sci 96(4):2130–2136

    Article  CAS  Google Scholar 

  41. Egelandsdal B, Dingstad G, Tøgersen G, Lundby F, Langsrud Ø (2005) Autofluorescence quantifies collagen in sausage batters with a large variation in myoglobin content. Meat Sci 69(1):35–46

    Article  CAS  Google Scholar 

  42. Sahar A, Boubellouta T, Lepetit J, Dufour É (2009) Front-face fluorescence spectroscopy as a tool to classify seven bovine muscles according to their chemical and rheological characteristics. Meat Sci 83(4):672–677

    Article  CAS  Google Scholar 

  43. Sahar A, Dufour É (2015) Classification and characterization of beef muscles using front-face fluorescence spectroscopy. Meat Sci 100:69–72

    Article  CAS  Google Scholar 

  44. Aït-Kaddour A, Thomas A, Mardon J, Jacquot S, Ferlay A, Gruffat D (2016) Potential of fluorescence spectroscopy to predict fatty acid composition of beef. Meat Sci 113:124–131

    Article  CAS  Google Scholar 

  45. Sahar A, Rahman UU, Kondjoyan A, Portanguen S, Dufour E (2016) Monitoring of thermal changes in meat by synchronous fluorescence spectroscopy. J Food Eng 168:160–165

    Article  Google Scholar 

  46. Sahar A, Portanguen S, Kondjoyan A, Dufour É (2010) Potential of synchronous fluorescence spectroscopy coupled with chemometrics to determine the heterocyclic aromatic amines in grilled meat. Eur Food Res Technol 231(5):803–812

    Article  CAS  Google Scholar 

  47. Berhe DT, Lawaetz AJ, Engelsen SB, Hviid MS, Lametsch R (2015) Accurate determination of endpoint temperature of cooked meat after storage by Raman spectroscopy and chemometrics. Food Control 52:119–125

    Article  Google Scholar 

  48. Gatellier P, Santé-Lhoutellier V, Portanguen S, Kondjoyan A (2009) Use of meat fluorescence emission as a marker of oxidation promoted by cooking. Meat Sci 83(4):651–656

    Article  CAS  Google Scholar 

  49. Gatellier P, Gomez S, Gigaud V, Berri C, Le Bihan-Duval E, Santé-Lhoutellier V (2007) Use of a fluorescence front face technique for measurement of lipid oxidation during refrigerated storage of chicken meat. Meat Sci 76(3):543–547

    Article  CAS  Google Scholar 

  50. Aït-Kaddour A, Boubellouta T, Chevallier I (2011) Development of a portable spectrofluorimeter for measuring the microbial spoilage of minced beef. Meat Sci 88(4):675–681

    Article  Google Scholar 

  51. Sahar A, Boubellouta T, Dufour É (2011) Synchronous front-face fluorescence spectroscopy as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet. Food Res Int 44(1):471–480

    Article  CAS  Google Scholar 

  52. Yoshimura M, Sugiyama J, Tsuta M, Fujita K, Shibata M, Kokawa M, Oshita S, Oto N (2014) Prediction of aerobic plate count on beef surface using fluorescence fingerprint. Food Bioprocess Technol 7(5):1496–1504

    Article  Google Scholar 

  53. Mita Mala D, Yoshimura M, Kawasaki S, Tsuta M, Kokawa M, Trivittayasil V, Sugiyama J, Kitamura Y (2016) Fiber optics fluorescence fingerprint measurement for aerobic plate count prediction on sliced beef surface. LWT--Food Sci Technol 68:14–20

    Article  CAS  Google Scholar 

  54. Oto N, Oshita S, Makino Y, Kawagoe Y, Sugiyama J, Yoshimura M (2013) Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy. Meat Sci 93(3):579–585

    Article  CAS  Google Scholar 

  55. Schneider J, Wulf J, Surowsky B, Schmidt H, Schwägele F, Schlüter O (2008) Fluorimetric detection of protoporphyrins as an indicator for quality monitoring of fresh intact pork meat. Meat Sci 80(4):1320–1325

    Article  CAS  Google Scholar 

  56. Durek J, Fröhling A, Bolling J, Thomasius R, Durek P, Schlüter OK (2016) Non-destructive mobile monitoring of microbial contaminations on meat surfaces using porphyrin fluorescence intensities. Meat Sci 115:1–8

    Article  CAS  Google Scholar 

  57. Karoui R, Thomas E, Dufour E (2006) Utilisation of a rapid technique based on front-face fluorescence spectroscopy for differentiating between fresh and frozen–thawed fish fillets. Food Res Int 39(3):349–355

    Article  CAS  Google Scholar 

  58. Hassoun A, Karoui R (2015) Front-face fluorescence spectroscopy coupled with chemometric tools for monitoring fish freshness stored under different refrigerated conditions. Food Control 54:240–249

    Article  CAS  Google Scholar 

  59. Hassoun A, Karoui R (2016) Monitoring changes in whiting (Merlangius merlangus) fillets stored under modified atmosphere packaging by front face fluorescence spectroscopy and instrumental techniques. Food Chem 200:343–353

    Article  CAS  Google Scholar 

  60. Elmasry G, Nagai H, Moria K, Nakazawa N, Tsuta M, Sugiyama J, Okazaki E, Nakauchi S (2015) Freshness estimation of intact frozen fish using fluorescence spectroscopy and chemometrics of excitation–emission matrix. Talanta 143:145–156

    Article  CAS  Google Scholar 

  61. Elmasry G, Nakazawa N, Okazaki E, Nakauchi S (2016) Non-invasive sensing of freshness indices of frozen fish and fillets using pretreated excitation–emission matrices. Sensors Actuators B Chem 228:237–250

    Article  CAS  Google Scholar 

  62. Airado-Rodríguez D, Skaret J, Wold JP (2010) Assessment of the quality attributes of cod caviar paste by means of front-face fluorescence spectroscopy. J Agric Food Chem 58(9):5276–5285

    Article  CAS  Google Scholar 

  63. Liu X, Jing J, Li S, Zhang G, Zou T, Xia X, Huang W (2012) Measurement of pyrene in the gills of exposed fish using synchronous fluorescence spectroscopy. Chemosphere 86(2):198–201

    Article  CAS  Google Scholar 

  64. Eaton JK, Alcivar-Warren A, Kenny JE (2012) Multidimensional fluorescence fingerprinting for classification of shrimp by location and species. Environ Sci Technol 46(4):2276–2282

    Article  CAS  Google Scholar 

  65. Veberg A, Vogt G, Wold JP (2006) Fluorescence in aldehyde model systems related to lipid oxidation. LWT--Food Sci Technol 39(5):562–570

    Article  CAS  Google Scholar 

  66. Karoui R, Nicolaï B, de Baerdemaeker J (2008) Monitoring the egg freshness during storage under modified atmosphere by fluorescence spectroscopy. Food Bioprocess Technol 1(4):346–356

    Article  Google Scholar 

  67. Philippidis A, Papliaka ZE, Anglos D (2016) Surface enhanced Raman and 2D-fluorescence spectroscopy for the investigation of amino acids and egg proteins. Microchem J 126:230–236

    Article  CAS  Google Scholar 

  68. Kyriakidis NB, Skarkalis P (2000) Fluorescence spectra measurement of olive oil and other vegetable oils. J AOAC Int 83(6):1435–1439

    CAS  Google Scholar 

  69. Guimet F, Ferré J, Boqué R (2005) Rapid detection of olive–pomace oil adulteration in extra virgin olive oils from the protected denomination of origin “Siurana” using excitation–emission fluorescence spectroscopy and three-way methods of analysis. Anal Chim Acta 544(1–2):143–152

    Google Scholar 

  70. Kongbonga Y, Ghalila H, Onana MB, Majdi Y, Lakhdar Z, Mezlini H, Sevestre-Ghalila S (2011) Characterization of vegetable oils by fluorescence spectroscopy. Food Nutr Sci 02(07):692–699

    Article  CAS  Google Scholar 

  71. Silva T, Eduardo C, Filardi VL, Pepe I, Chaves M, Santos CM (2015) Classification of food vegetable oils by fluorimetry and artificial neural networks. Food Control 47:86–91

    Article  CAS  Google Scholar 

  72. Hazir MHM, Shariff ARM, Amiruddin MD, Ramli AR, Iqbal Saripan M (2012) Oil palm bunch ripeness classification using fluorescence technique. J Food Eng 113(4):534–540

    Article  Google Scholar 

  73. Poulli KI, Mousdis GA, Georgiou CA (2009) Monitoring olive oil oxidation under thermal and UV stress through synchronous fluorescence spectroscopy and classical assays. Food Chem 117(3):499–503

    Article  CAS  Google Scholar 

  74. Tena N, García-González DL, Aparicio R (2009) Evaluation of virgin olive oil thermal deterioration by fluorescence spectroscopy. J Agric Food Chem 57(22):10505–10511

    Article  CAS  Google Scholar 

  75. Silva VD, Conceição JN, Oliveira IP, Lescano CH, Muzzi RM, Filho OPS, Conceição EC, Casagrande GA, Caires ARL (2015) Oxidative stability of baru (dipteryx alata vogel) oil monitored by fluorescence and absorption spectroscopy. J Spectrosc 2015:6

    Google Scholar 

  76. Poulli KI, Mousdis GA, Georgiou CA (2006) Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration with sunflower oil. Anal Bioanal Chem 386(5):1571–1575

    Article  CAS  Google Scholar 

  77. Poulli KI, Mousdis GA, Georgiou CA (2007) Rapid synchronous fluorescence method for virgin olive oil adulteration assessment. Food Chem 105(1):369–375

    Article  CAS  Google Scholar 

  78. Mabood F, Boqué R, Folcarelli R, Busto O, Al-Harrasi A, Hussain J (2015) Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis. Spectrochim Acta, Part A 143:298–303

    Article  CAS  Google Scholar 

  79. Mabood F, Boqué R, Folcarelli R, Busto O, Jabeen F, Al-Harrasi A, Hussain J (2016) The effect of thermal treatment on the enhancement of detection of adulteration in extra virgin olive oils by synchronous fluorescence spectroscopy and chemometric analysis. Spectrochim Acta, Part A 161:83–87

    Article  CAS  Google Scholar 

  80. Tao C, Ruan J, Shu S, Han Z (2016) Detection of fried oil in edible oil based on three-dimensional fluorescence spectroscopy. Zhongguo Jiguang 43(1):0115001

    Google Scholar 

  81. Xu J, Liu X-F, Wang Y-T (2016) A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique. Food Chem 212:72–77

    Article  CAS  Google Scholar 

  82. Ge F, Chen C, Liu D, Zhao S (2014) Rapid quantitative determination of walnut oil adulteration with sunflower oil using fluorescence spectroscopy. Food Anal Methods 7(1):146–150

    Article  Google Scholar 

  83. Li B, Wang H, Zhao Q, Ouyang J, Wu Y (2015) Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study. Food Chem 181:25–30

    Article  CAS  Google Scholar 

  84. Ndolo VU, Beta T, Fulcher RG (2013) Ferulic acid fluorescence intensity profiles and concentration measured by HPLC in pigmented and non-pigmented cereals. Food Res Int 52(1):109–118

    Article  CAS  Google Scholar 

  85. Ahmad MH, Nache M, Waffenschmidt S, Hitzmann B (2016) A fluorescence spectroscopic approach to predict analytical, rheological and baking parameters of wheat flours using chemometrics. J Food Eng 182:65–71

    Article  CAS  Google Scholar 

  86. Zeković I, Lenhardt L, Dramićanin T, Dramićanin MD (2012) Classification of intact cereal flours by front-face synchronous fluorescence spectroscopy. Food Anal Methods 5(5):1205–1213

    Article  Google Scholar 

  87. Kokawa M, Fujita K, Sugiyama J, Tsuta M, Shibata M, Araki T, Nabetani H (2011) Visualization of the distribution of multiple constituents in bread dough by use of fluorescence fingerprint imaging. Procedia Food Sci 1:927–934

    Article  CAS  Google Scholar 

  88. Kokawa M, Fujita K, Sugiyama J, Tsuta M, Shibata M, Araki T, Nabetani H (2012) Quantification of the distributions of gluten, starch and air bubbles in dough at different mixing stages by fluorescence fingerprint imaging. J Cereal Sci 55(1):15–21

    Article  CAS  Google Scholar 

  89. Kokawa M, Yokoya N, Ashida H, Sugiyama J, Tsuta M, Yoshimura M, Fujita K, Shibata M (2015) Visualization of gluten, starch, and butter in pie pastry by fluorescence fingerprint Imaging. Food Bioprocess Technol 8(2):409–419

    Article  CAS  Google Scholar 

  90. Ahmad MH, Nache M, Waffenschmidt S, Hitzmann B (2016) Characterization of farinographic kneading process for different types of wheat flours using fluorescence spectroscopy and chemometrics. Food Control 66:44–52

    Article  CAS  Google Scholar 

  91. Garcia R, Boussard A, Rakotozafy L, Nicolas J, Potus J, Rutledge DN, Cordella CB (2016) 3D-front-face fluorescence spectroscopy and independent components analysis: a new way to monitor bread dough development. Talanta 147:307–314

    Article  CAS  Google Scholar 

  92. Grote B, Zense T, Hitzmann B (2014) 2D-fluorescence and multivariate data analysis for monitoring of sourdough fermentation process. Food Control 38:8–18

    Article  CAS  Google Scholar 

  93. Rizkallah J, Morales FJ, Ait-Ameur L, Fogliano V, Hervieu A, Courel M, Birlouez Aragon I (2008) Front face fluorescence spectroscopy and multiway analysis for process control and NFC prediction in industrially processed cookies. Chemom Intell Lab Syst 93(2):99–107

    Article  CAS  Google Scholar 

  94. Botosoa EP, Chèné C, Karoui R (2013) Use of front face fluorescence for monitoring lipid oxidation during ageing of cakes. Food Chem 141(2):1130–1139

    Article  CAS  Google Scholar 

  95. Botosoa EP, Chénè C, Karoui R (2013) Monitoring changes in sponge cakes during aging by front face fluorescence spectroscopy and instrumental techniques. J Agric Food Chem 61(11):2687–2695

    Article  CAS  Google Scholar 

  96. Kolb CA, Wirth E, Kaiser WM, Meister A, Riederer M, Pfündel EE (2006) Noninvasive evaluation of the degree of ripeness in grape berries (Vitis vinifera L. Cv. Bacchus and Silvaner) by chlorophyll fluorescence. J Agric Food Chem 54(2):299–305

    Article  CAS  Google Scholar 

  97. Jiang L, Shen Z, Zheng H, He W, Deng G, Lu H (2013) Noninvasive evaluation of fructose, glucose, and sucrose contents in fig fruits during development using chlorophyll fluorescence and chemometrics. J Agric Sci Technol 15(2):333–342

    CAS  Google Scholar 

  98. Zhu D, Ji B, Eum HL, Zude M (2009) Evaluation of the non-enzymatic browning in thermally processed apple juice by front-face fluorescence spectroscopy. Food Chem 113(1):272–279

    Article  CAS  Google Scholar 

  99. Acharid A, Rizkallah J, Ait-Ameur L, Neugnot B, Seidel K, Särkkä-Tirkkonen M, Kahl J, Birlouez-Aragon I (2012) Potential of front face fluorescence as a monitoring tool of neoformed compounds in industrially processed carrot baby food. LWT--Food Sci Technol 49(2):305–311

    Article  CAS  Google Scholar 

  100. Ammari F, Redjdal L, Rutledge DN (2015) Detection of orange juice frauds using front-face fluorescence spectroscopy and independent components analysis. Food Chem 168:211–217

    Article  CAS  Google Scholar 

  101. Trivittayasil V, Tsuta M, Imamura Y, Sato T, Otagiri Y, Obata A, Otomo H, Kokawa M, Sugiyama J, Fujita K, Yoshimura M (2016) Fluorescence fingerprint as an instrumental assessment of the sensory quality of tomato juices. J Sci Food Agric 96(4):1167–1174

    Article  CAS  Google Scholar 

  102. Nakamura Y, Fujita K, Sugiyama J, Tsuta M, Shibata M, Yoshimura M, Kokawa M, Nabetani H, Araki T (2012) Discrimination of the geographic origin of mangoes using fluorescence fingerprint. Nippon Shokuhin Kagaku Kogaku Kaishi 59(8):387–393

    Article  Google Scholar 

  103. Sádecká J, Tóthová J, Májek P (2009) Classification of brandies and wine distillates using front face fluorescence spectroscopy. Food Chem 117(3):491–498

    Article  CAS  Google Scholar 

  104. Airado-Rodríguez D, Durán-Merás I, Galeano-Díaz T, Wold JP (2011) Front-face fluorescence spectroscopy: a new tool for control in the wine industry. J Food Compos Anal 24(2):257–264

    Article  CAS  Google Scholar 

  105. Elcoroaristizabal S, Callejón RM, Amigo JM, Ocaña-González JA, Morales ML, Ubeda C (2016) Fluorescence excitation-emission matrix spectroscopy as a tool for determining quality of sparkling wines. Food Chem 206:284–290

    Article  CAS  Google Scholar 

  106. Sikorska E, Gliszczyńska-świgło A, Insińska-Rak M, Khmelinskii I, de Keukeleire D, Sikorski M (2008) Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods. Anal Chim Acta 613(2):207–217

    Article  CAS  Google Scholar 

  107. Cao S, Dong N, Chen J (2011) Synchronous fluorescence determination of phytic acid in FOODSTUFFS and urine based on replacement reaction. Phytochem Anal 22(2):119–123

    Article  CAS  Google Scholar 

  108. Di Anibal CV, Rodríguez MS, Albertengo L (2015) Synchronous fluorescence and multivariate classification analysis as a screening tool for determining Sudan I dye in culinary spices. Food Control 56:18–23

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hitzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ahmad, M.H., Sahar, A., Hitzmann, B. (2017). Fluorescence Spectroscopy for the Monitoring of Food Processes. In: Hitzmann, B. (eds) Measurement, Modeling and Automation in Advanced Food Processing. Advances in Biochemical Engineering/Biotechnology, vol 161. Springer, Cham. https://doi.org/10.1007/10_2017_11

Download citation

Publish with us

Policies and ethics