Skip to main content
Log in

The molecular and technological characterization of lactic acid bacteria in einkorn sourdough: effect on bread quality

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aimed to investigate the characterization of lactic acid bacteria strains (LABs) in spontaneous sourdough produced from einkorn flour as a new sourdough source and to determine some quality characteristics of sourdough bread. Thirty-two different LABs were isolated from spontaneously fermented einkorn sourdough under laboratory conditions. Seven different lactic acid bacteria strain (LAB) species, Lb. crustorum (dominant species 10), Pediococcus (4), Lb. brevis (6), Lb. paraplantarum (1), Lb. plantarum (5), Lb. fermentum (4), and Lb. curvatus (2) were identified by PCR (16S). Lb. paraplantarum and P. acidilactici showed high antibacterial activity against B. subtilis ATCC6633, B. cereus ATCC11778, and E. coli ATCC25922, and Lb. crustorum MN047 and L. brevis R-1 showed an antifungal effect on P. carneum, A. flavus, and A. niger. At the same time, all strains showed an acid-tolerant effect, because they showed a survival ratio higher than 70% at pH 2.5. The highest phytase activity was observed from L. paraplantarum 2815 and L. plantarum AAS3. The study aimed to investigate Lb. brevis R-1 and Lb. paraplantarum 7285 starter culture effects and bread quality parameters on dough made solely with einkorn or with a mixture of 25%, 50%, or 75% einkorn flour, compared to a solely wheat flour sourdough. The sourdough bread containing 25% and 50% einkorn flour had better volume, specific volume, and textural properties than bread containing 75% and 100% einkorn flour; they were scored as good as 100% wheat dough bread in terms of sensory properties. This study recommends that einkorn sourdough could be utilized as a beneficial source, having a diverse range of LABs and strong technological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. Best, Cereal Food World 54, 226–228 (2009)

    Google Scholar 

  2. M. Rinaldi, M. Paciulli, A. Caligiani, F. Scazzina, E. Chiavaro, Food Chem. 224, 144–152 (2017)

    Article  CAS  Google Scholar 

  3. A. Hidalgo, A. Brandolini, J. Sci. Food. Agric. 94, 601–612 (2014)

    Article  CAS  Google Scholar 

  4. E.S.M. Abdel-Aal, J.C. Young, P.J. Wood, M. Rabalski, P. Hucl, D. Falk, J. Fregeau-Reid, Int. Cereal Chem. 79, 455–457 (2002)

    Article  CAS  Google Scholar 

  5. P. Stolz, in Handbook of dough fermentations, ed. By K. Kulp, K. Lorenz (Marcel Dekker, New York, 2003), pp. 23–43

  6. C. Garofalo, L. Aquilanti, F. Clementi, in Wheat: genetics, crops and food production, ed. by M.T. Almeida (Nova Science Publishers, New York, 2011), pp. 366–392

    Google Scholar 

  7. K. Katina, Sourdough: a tool for the improved flavour, texture and shelf-life of wheat bread (VTT publication, Vuorimiehentie, 2005), pp. 3–92

    Google Scholar 

  8. E.K. Arendt, L.A.M. Ryan, D.B. Fabio, Food Microbiol. 24, 165–174 (2007)

    Article  CAS  Google Scholar 

  9. M. Gobbetti, M. De Angelis, A. Corsetti, R. Di Cagno, Trends Food Sci. Technol. 16, 57–69 (2005)

    Article  CAS  Google Scholar 

  10. M.G. Ganzle, H. Salovaara, in Lactic acid bacteria-Microbiological and Functional Aspects, ed. by V. Gabriel, A.C. Ouwehand, S. Salminen, A. Wright (Marcel Dekker, New York, 2004), pp. 431–451

    Google Scholar 

  11. F. Antognoni, R. Mandrioli, A. Bordoni, M. Du Nunzio, B. Viadel, E. Gallego, M.P. Villalba, T.L. Cobos, D.L. Taneyo Saa, A. Gianotti, Nutrients 9, 1232 (2017)

    Article  Google Scholar 

  12. F. Barone, L. Laghi, A. Gianotta, D. Ventrella, D.L. Taneyo Saa, A. Bordoni, M. Forni, P. Brigidi, M.L. Bacci, S. Turroni, Nutrients 11, 16 (2019)

    Article  CAS  Google Scholar 

  13. A. Izambaeva, B. Bozadjıev, T.S. Gogova, A. Durakova, T.Z. Dessev, A. Koleva, A. Krasteva, Bulg. J. Agric. Sci. 22, 331–338 (2016)

    Google Scholar 

  14. E. Lhomme, A. Lattanzi, X. Dousset, F. Minervini, M. De Angelis, G. Lacazei, B. Onno, M. Gobbetti, Int. J. Food Microbiol. 215, 161–170 (2015)

    Article  CAS  Google Scholar 

  15. A. Oust, T. Møretrø, C. Kirschner, J. Microbiol. Methods 59, 149–162 (2004)

    Article  CAS  Google Scholar 

  16. M.Z. Durak, J.J. Churey, D.M. Danyluk, R.W. Worobo, Int. J. Food Microbiol 142, 286–291 (2010)

    Article  CAS  Google Scholar 

  17. G.C. Baker, J.J. Smith, D.A. Cowan, J. Microbiol. Methods 55, 541–555 (2003)

    Article  CAS  Google Scholar 

  18. C.C. Chen, K.C. Chang, D.P. Duh, S.P. Wang, C.S. Wang, Afr. J. Microbiol. 7, 4787–4793 (2013)

    Article  Google Scholar 

  19. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731–2739 (2011)

    Article  CAS  Google Scholar 

  20. L. Lacumin, F. Cecchini, M. Manzano, M. Osualdini, D. Boscolo, S. Orlic, Food Microbiol. 26, 128–135 (2009)

    Article  Google Scholar 

  21. H.S. Chung, Y.B. Kim, S.L. Chun, G.E. Ji, Int. J. Food Microbiol. 47, 25–32 (1999)

    Article  CAS  Google Scholar 

  22. J. Magnusson, J. Schnurer, Appl. Environ. Microbiol. 67, 1–5 (2001)

    Article  CAS  Google Scholar 

  23. M.E. Premono, A.M. Moawad, P.L.G. Vleck, Indonasian J. Crop Sci. 11, 13–23 (1996)

    Google Scholar 

  24. Z. Chen, C. Zhu, Y. Zhang, D. Niu, J. Du, Postharvest Biol. Technol. 58, 232–238 (2010)

    Article  CAS  Google Scholar 

  25. D.J.M. Mouwena, A. Hörmanb, H. Korkealab, A.A. Ordóneza, M. Prieto, Vib. Spectrosc. 56, 193–201 (2011)

    Article  Google Scholar 

  26. S. Erkkila, E. Petaja, Meat Sci. 55, 297–300 (2000)

    Article  CAS  Google Scholar 

  27. T. Vasiljevic, N.P. Shah, Int. Dairy J. 18, 714–728 (2000)

    Article  Google Scholar 

  28. J.Y. Oh, S.D. Jung, LWT Food Sci. Technol. 63, 437–444 (2015)

    Article  CAS  Google Scholar 

  29. A. Santos, M. San Mauro, A. Sanchez, J.M. Torres, D. Marquina, Syst. Appl. Microbiol. 26, 434–437 (2003)

    Article  CAS  Google Scholar 

  30. E. Salvucci, J.G. LeBlanc, G. Perez, LWT Food Sci. Technol. 70, 185–191 (2016)

    Article  CAS  Google Scholar 

  31. A.B. Benavides, M. Ulcuango, L. Yépez, G.N. Tenea, Rev. Argent Microbiol. 48, 236–244 (2016)

    PubMed  Google Scholar 

  32. T.F. Calix-Lara, M. Rajendran, S.T. Talcott, S.B. Smith, R.K. Miller, A. Castillo, Food Microbiol. 38, 192–200 (2014)

    Article  CAS  Google Scholar 

  33. F. Manini, M.C. Casiraghi, K. Poutanen, M. Brasca, D. Erba, C. Plumed-Ferrer, LWT Food Sci. Technol. 66, 275–283 (2016)

    Article  CAS  Google Scholar 

  34. M. Arici, B. Bilgin, O. Sagdıc, C. Ozdemir, Food Microbiol. 21, 19–24 (2004)

    Article  Google Scholar 

  35. J. Schnurer, J. Magnusson, Trends Food Sci. Technol. 16, 70–78 (2005)

    Article  Google Scholar 

  36. C.I. Febles, A. Arias, A. Hardisson, C. Rodríquez-Alvarez, A. Sierra, J. Cereal Sci. 36, 19–23 (2002)

    Article  CAS  Google Scholar 

  37. V. Kumar, A.K. Sinha, H.P.S. Makkar, K. Becker, Food Chem. 120, 945–959 (2010)

    Article  CAS  Google Scholar 

  38. L. Nuobariene, D. Cizeikiene, E. Gradzeviciute, A.S. Hansen, S.K. Rasmussen, G. Juodeikiene, F.K. Vogensen, LWT Food Sci. Technol. 63, 1–7 (2015)

    Article  Google Scholar 

  39. A. Hidalgo, A. Brandolini, C. Pompei, R. Piscozzi, J. Cereal Sci. 44, 182–193 (2006)

    Article  CAS  Google Scholar 

  40. K. Piasecka, E. Slowik, J. Rozmierska, B. Chablowska, J. Agric. Eng. Res. 60, 61–66 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Arıcı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakır, E., Arıcı, M., Durak, M.Z. et al. The molecular and technological characterization of lactic acid bacteria in einkorn sourdough: effect on bread quality. Food Measure 14, 1646–1655 (2020). https://doi.org/10.1007/s11694-020-00412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00412-5

Keywords

Navigation