Skip to main content

Advertisement

Log in

Modeling on respiration kinetics and modified atmospheric packaging of fig fruit

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The article demonstrates the effect of the respiration rate of fig fruit at different storage temperatures (5–35 °C) and the designing of its modified atmospheric packaging. The average O2 consumption rates \(\left( {{\text{R}}_{{{\text{O}}_{2} }} } \right)\) and CO2 evolution rate \(\left( {{\text{R}}_{{{\text{CO}}_{2} }} } \right)\) of fig fruits within 5–35 °C were varied from 4.02 to 26.18 mL kg−1 h−1 and 4.89 to 29.19 mL kg−1 h−1, respectively. The respiration rate at 35 °C was increased up to 6.51 times in terms of O2 and 5.97 times in terms of CO2 than the respiration rate at 5 °C. The results showed that under steady state condition at 35 °C there were almost 43.3% and 42.8% decrease in \({\text{R}}_{{{\text{O}}_{2} }}\) and \({\text{R}}_{{{\text{CO}}_{2} }}\) values with respect to increase in time. The enzyme kinetics model in combination with the Arrhenius equation precisely predicted the respiration rate of fig fruit at different storage temperatures. The maximum respiration rate (Vm) for the enzyme kinetics model was increased from 10.910 to 45.620 mL kg−1 h−1 in terms of O2 and from 12.670 to 50.310 mL kg−1 h−1 in terms of CO2. The designing of modified atmospheric packaging was done to evaluate the influence of time and temperature on the respiration rate of fig fruit with various packaging materials. The modified atmosphere in polypropylene package with equilibrium concentration for O2 (0.0878) and CO2 (0.0971) was established within a period of 14 h was found to be the best suitable packaging material for extending the shelf life of fig fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.S. Jeong, P.A. Lachance, Phytosterols and fatty acids in fig (Ficus carica, var. Mission) fruit and tree components. J. Food Sci. 66, 278–281 (2001)

    Article  CAS  Google Scholar 

  2. A. Solomon, S. Golubowicz, Z. Yablowicz, S. Grossman, M. Bergman, H.E. Gottlieb et al., Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agric. Food Chem. 54, 7717–7723 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. R. Veberic, M. Colaric, F. Stampar, Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem. 106, 153–157 (2008)

    Article  CAS  Google Scholar 

  4. R.B. Waghmare, U.S. Annapure, Integrated effect of radiation processing and modified atmosphere packaging (MAP) on shelf life of fresh fig. J. Food Sci. Technol. 55, 1–10 (2018)

    Article  CAS  Google Scholar 

  5. E.P. Lansky, H.M. Paavilainen, A.D. Pawlus, R.A. Newman, Ficus spp.(fig): ethnobotany and potential as anticancer and anti-inflammatory agents. J. Ethnopharmacol. 119, 195–213 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. X.M. Yang, W. Yu, Z.P. Ou, W.M. Liu, X.L. Ji, Antioxidant and immunity activity of water extract and crude polysaccharide from Ficus carica L. fruit. Plant Foods Hum. Nutr. 64, 167–173 (2009)

    Article  CAS  PubMed  Google Scholar 

  7. H. Lazreg Aref, B. Gaaliche, A. Fekih, M. Mars, M. Aouni, J. Pierre Chaumon, K. Said, In vitro cytotoxic and antiviral activities of Ficus carica latex extracts. Nat. Prod. Res. 25, 310–319 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. P.K. Irfan, V. Vanjakshi, M.K. Prakash, R. Ravi, V.B. Kudachikar, Calcium chloride extends the keeping quality of fig fruit (Ficus carica L.) during storage and shelf-life. Postharvest Biol. Technol. 82, 70–75 (2013)

    Article  CAS  Google Scholar 

  9. A. Piga, I. Pinna, K.B. Özer, M. Agabbio, U. Aksoy, Hot air dehydration of figs (Ficus carica L.): drying kinetics and quality loss. Int. J. Food Sci. Technol. 39, 793–799 (2004)

    Article  CAS  Google Scholar 

  10. A.A. Kader, Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technol. 40, 99–104 (1986)

    CAS  Google Scholar 

  11. S.J. Kays, Postharvest physiology and handling of perishable plant products. Van Nostrand Reinhold Inc (1991)

  12. S.C. Fonseca, F.A. Oliveira, J.K. Brecht, Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. J. Food Eng. 52, 99–119 (2002)

    Article  Google Scholar 

  13. K. Iqbal, F. Liu, C.X. Gong, A.D.C. Alonso, I. Grundke-Iqbal, Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 118, 53–69 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. Torrieri, N. Perone, S. Cavella, P. Masi, Modelling the respiration rate of minimally processed broccoli (Brassica rapa var. sylvestris) for modified atmosphere package design. Int. J. Food Sci. Technol. 45, 2186–2193 (2010)

    Article  CAS  Google Scholar 

  15. W. Lee, P. Mitchell, R. Tjian, Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49, 741–752 (1987)

    Article  CAS  PubMed  Google Scholar 

  16. P.E. Hagger, D.S. Lee, K.L. Yam, Application of an enzyme kinetics based respiration model to closed system experiments for fresh produce. J. Food Process. Eng. 15, 143–157 (1992)

    Article  Google Scholar 

  17. Y. Song, H.K. Kim, K.L. Yam, Respiration rate of blueberry in modified atmosphere at various temperatures. J. Am. Soc. Hortic. Sci. 117, 925–929 (1992)

    Article  Google Scholar 

  18. S.I. Hong, D.M. Kim, Influence of oxygen concentration and temperature on respiratory characteristics of fresh-cut green onion. Int. J. Food Sci. Technol. 36, 283–289 (2001)

    Article  CAS  Google Scholar 

  19. T. Beveridge, N.B. Day, Respiration of sweet cherries determined in sealed, impermeable containers. J. Ins. Can. Inst. Food Sci. Technol. 24, 213–217 (1991)

    Article  Google Scholar 

  20. P. Jaime, M.L. Salvador, R. Oria, Respiration rate of sweet cherries:‘Burlat’, ‘Sunburst’and ‘Sweetheart’cultivars. J. Food Sci. 66, 43–47 (2001)

    Article  CAS  Google Scholar 

  21. B.G. Drake, J. Azcon-Bieto, J. Berry, J. Bunce, P. Dijkstra, J. Farrar et al., Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ. 22, 649–657 (1999)

    Article  CAS  Google Scholar 

  22. K.I. Hayakawa, Y.S. Henig, S.G. Gilbert, Formulae for predicting gas exchange of fresh produce in polymeric film package. J. Food Sci. 40, 186–191 (1975)

    Article  CAS  Google Scholar 

  23. A.C. Cameron, W.A.L.T.E.R. Boylan-Pett, J. Lee, Design of modified atmosphere packaging systems: modeling oxygen concentrations within sealed packages of tomato fruits. J. Food Sci. 54, 1413–1416 (1989)

    Article  Google Scholar 

  24. A.C. Cameron, R.M. Beaudry, N.H. Banks, M.V. Yelanich, Modified-atmosphere packaging of blueberry fruit: modeling respiration and package oxygen partial pressures as a function of temperature. J. Am. Soc. Hortic. Sci. 119, 534–539 (1994)

    Article  Google Scholar 

  25. D.W. Joles, A.C. Cameron, A. Shirazi, P.D. Petracek, R.M. Beaudry, Modified-atmosphere packaging of Heritage’red raspberry fruit: respiratory response to reduced oxygen, enhanced carbon dioxide, and temperature. J. Am. Soc. Hortic. Sci. 119, 540–545 (1994)

    Article  Google Scholar 

  26. S. Fishman, V. Rodov, J. Peretz, S. Ben-Yehoshua, Model for gas exchange dynamics in modified-atmosphere packages of fruits and vegetables. J. Food Sci. 60, 1078–1083 (1995)

    Article  CAS  Google Scholar 

  27. Y. Makino, K. Iwasaki, T. Hirata, Oxygen consumption model for fresh produce on the basis of adsorption theory. Trans. ASAE-Am. Soc. Agric. Eng. 39, 1067–1074 (1996)

    Article  Google Scholar 

  28. P.V. Mahajan, T.K. Goswami, PH—Postharvest technology: enzyme kinetics based modelling of respiration rate for apple. J. Agric. Eng. Res. 79, 399–406 (2001)

    Article  Google Scholar 

  29. S.D. Bhande, M.R. Ravindra, T.K. Goswami, Respiration rate of banana fruit under aerobic conditions at different storage temperatures. J. Food Eng. 87, 116–123 (2008)

    Article  Google Scholar 

  30. K.K. Dash, M.R. Ravindra, T.K. Goswami, Modeling of respiration rate of sapota fruit under aerobic conditions. J. Food Process Eng. 32, 528–543 (2009)

    Article  Google Scholar 

  31. T. Ghosh, K.K. Dash, Respiration rate model and modified atmosphere packaging of bhimkol banana. Eng. Agric. Environ. Food 11, 186–195 (2018)

    Article  Google Scholar 

  32. P.V. Mahajan, F.A.R. Oliveira, J.C. Montanez, J. Frias, Development of user-friendly software for design of modified atmosphere packaging for fresh and fresh-cut produce. Innov. Food Sci. Emerg. Technol. 8, 84–92 (2007)

    Article  Google Scholar 

  33. Y.S. Henig, S.G. Gilbert, Computer analysis of the variables affecting respiration and quality of produce packaged in polymeric films. J. Food Sci. 40, 1033–1035 (1975)

    Article  CAS  Google Scholar 

  34. M. Omid, M. Khojastehnazhand, A. Tabatabaeefar, Estimating volume and mass of citrus fruits by image processing technique. J. Food Eng. 100(2), 315–321 (2010)

    Article  Google Scholar 

  35. R.G. Duggleby, J.F. Morrison, Progress curve analysis in enzyme kinetics. Model discrimination and parameter estimation. Biochim. Biophys. Acta (BBA) 526, 398–409 (1978)

    Article  CAS  Google Scholar 

  36. M. Nishiyama, S. Kleijn, V. Aquilanti, T. Kasai, Mass spectrometric study of the kinetics of O2 consumption and CO2 production by breathing leaves. Chem. Phys. Lett. 470, 332–336 (2009)

    Article  CAS  Google Scholar 

  37. P. Srinivasa, R. Baskaran, M. Ramesh, K. Harish Prashanth, R. Tharanathan, Storage studies of mango packed using biodegradable chitosan film. Eur. Food Res. Technol. 215, 504–508 (2002)

    Article  CAS  Google Scholar 

  38. S.I. Hong, D. Kim, The effect of packaging treatment on the storage quality of minimally processed bunched onions. Int. J. Food Sci. Technol. 39, 1033–1041 (2004)

    Article  CAS  Google Scholar 

  39. R. Porat, B. Weiss, L. Cohen, A. Daus, N. Aharoni, Reduction of postharvest rind disorders in citrus fruit by modified atmosphere packaging. Postharvest Biol. Technol. 33, 35–43 (2004)

    Article  CAS  Google Scholar 

  40. R. Singh, S.K. Giri, S.D. Kulkarni, Respiratory behavior of turning stage mature tomato (Solanum lycopersicum L.) under closed system at different temperature. Croat. J. Food Sci. Technol. 5, 78–84 (2013)

    Google Scholar 

  41. R. Singh, S.K. Giri, S.D. Kulkarni, R. Ahirwar, Study on respiration rate and respiration quotient of green mature mango (Mangifera indica L.) under aerobic conditions. Asian J. Biol Sci. 7, 210–213 (2012)

    Google Scholar 

  42. R. Singh, S. Giri Kumar, S. Kulkarni, Respiratory behaviour of mature light green guava (Psidium guajava L.) under closed system (2015)

  43. S. Mangaraj, T.K. Goswami, Respiration rate modelling of royal delicious apple at different temperature. Fresh Prod. 2, 72–80 (2008)

    Google Scholar 

  44. S. Mangaraj, T.K. Goswami, Modeling of respiration rate of litchi fruit under aerobic conditions. Food Bioprocess Technol. 4, 272 (2011)

    Article  Google Scholar 

  45. A. Simon, E. González-Fandos, V. Tobar, The sensory and microbiological quality of fresh sliced mushroom (Agaricus bisporus L.) packaged in modified atmospheres. Int. J. Food Sci. Technol. 40, 943–952 (2005)

    Article  CAS  Google Scholar 

  46. R.C. Soliva-Fortuny, M. Ricart-Coll, O. Martín-Belloso, Sensory quality and internal atmosphere of fresh-cut Golden Delicious apples. Int. J. Food Sci. Technol. 40, 369–375 (2005)

    Article  CAS  Google Scholar 

  47. E. Aguayo, V. Escalona, F. Artés, Quality of fresh-cut tomato as affected by type of cut, packaging, temperature and storage time. Eur. Food Res. Technol. 219, 492–499 (2004)

    Article  CAS  Google Scholar 

  48. M.I. Gil, M.A. Conesa, F. Artes, Quality changes in fresh cut tomato as affected by modified atmosphere packaging. Postharvest Biol. Technol. 25, 199–207 (2002)

    Article  CAS  Google Scholar 

  49. A. Marrero, A.A. Kader, Optimal temperature and modified atmosphere for keeping quality of fresh-cut pineapples. Postharvest Biol. Technol. 39, 163–168 (2006)

    Article  CAS  Google Scholar 

  50. V.H. Escalona, B.E. Verlinden, S. Geysen, B.M. Nicolaï, Changes in respiration of fresh-cut butterhead lettuce under controlled atmospheres using low and superatmospheric oxygen conditions with different carbon dioxide levels. Postharvest Biol. Technol. 39, 48–55 (2006)

    Article  CAS  Google Scholar 

  51. D. Beltrán, M.V. Selma, J.A. Tudela, M.I. Gil, Effect of different sanitizers on microbial and sensory quality of fresh-cut potato strips stored under modified atmosphere or vacuum packaging. Postharvest Biol. Technol. 37, 37–46 (2005)

    Article  CAS  Google Scholar 

  52. C. Barry-Ryan, D. O’Beirne, Effects of peeling methods on the quality of ready-to-use carrot slices. Int. J. Food Sci. Technol. 35, 243–254 (2000)

    Article  CAS  Google Scholar 

  53. C.Y. Wang, L. Qi, Modified atmosphere packaging alleviates chilling injury in cucumbers. Postharvest Biol. Technol. 10, 195–200 (1997)

    Article  Google Scholar 

  54. F. Kappel, P. Toivonen, D.L. McKenzie, S. Stan, Storage characteristics of new sweet cherry cultivars. Hort. Science 37, 139–143 (2002)

    Article  Google Scholar 

  55. D. Martínez-Romero, F. Guillén, S. Castillo, D. Valero, M. Serrano, Modified atmosphere packaging maintains quality of table grapes. J. Food Sci. 68, 1838–1843 (2003)

    Article  Google Scholar 

  56. F. Artes, R. Villaescusa, J.A. Tudela, Modified atmosphere packaging of pomegranate. J. Food Sci. 65, 1112–1116 (2000)

    Article  CAS  Google Scholar 

  57. G. Xanthopoulos, E.D. Koronaki, A.G. Boudouvis, Mass transport analysis in perforation-mediated modified atmosphere packaging of strawberries. J. Food Eng. 111, 326–335 (2012)

    Article  CAS  Google Scholar 

  58. M.F. Fernandez-Leon, A.M. Fernandez-Leon, M. Lozano, M.C. Ayuso, M.L. Amodio, G. Colelli, D. Gonzalez-Gomez, Retention of quality and functional values of broccoli ‘Parthenon’ stored in modified atmosphere packaging. Food Control 31, 302–313 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshirod K. Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, T., Dash, K.K. Modeling on respiration kinetics and modified atmospheric packaging of fig fruit. Food Measure 14, 1092–1104 (2020). https://doi.org/10.1007/s11694-019-00359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00359-2

Keywords

Navigation