Skip to main content
Log in

Modeling of Respiration Rate of Litchi Fruit under Aerobic Conditions

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Respiration of the produce and permeation of gas through the packaging films are the processes involved in creating a modified atmosphere inside a package that will extend shelf life of agricultural perishables. Thus modeling respiration rate of the selected produce is crucial to the design of a successful modified atmosphere packaging system. Two different models based on regression analysis and enzyme kinetics were developed with the help of respiration data generated at temperatures 0, 5, 10, 15, 20, 25, and 30 °C for litchi fruit using the closed system method. Temperature was found to influence the model parameters. In the model, based on enzyme kinetics, the dependence of respiration rate on O2 and CO2 was found to follow the uncompetitive inhibition. The enzyme kinetic model parameters, calculated from the respiration rate at different O2 and CO2 concentration were used to fit the Arrhenius equation against different storage temperature. The regression coefficients values were used for the prediction of respiration rate using regression model. The activation energy and respiration pre-exponential factor were used to predict the model parameters of enzyme kinetics at any storage temperature. The developed models were tested for its validity at 2 °C. The models showed good agreement with the experimentally estimated respiration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a :

Regression coefficient

b :

Regression coefficient, h

E :

Mean relative deviation modulus, %

E a :

Activation energy, kJ g−1mol−1

k m(O2) :

Michaelis–Menten constant for O2 consumption, % O2

k m(CO2) :

Michaelis–Menten constant for CO2 evolution, % O2

k i(O2) :

Inhibition constants for O2 consumption, % CO2

k i(CO2) :

Inhibition constants for CO2 evolution, % CO2

N :

Number of respiration data points

R :

Universal gas constant, 8.314 kJ kg−1 mol −1K−1

R CO2 :

Respiration rate, ml [CO2] kg−1 h−1

R exp :

Experimental respiration rate, ml kg−1 h−1

R m :

Model parameter of enzyme kinetic

R pre :

Predicted respiration rate, ml kg−1 h−1

R O2 :

Respiration rate, ml [O2] kg−1 h−1

R p :

Respiration pre-exponential factor

T :

Storage temperature  °C

T abs :

Storage temperature, K

t :

Storage time, h

Δt :

Time difference between two gas measurements

V f :

Free volume of the respiration chamber, ml

v m(CO2) :

Maximum respiration rate for CO2 evolution, ml/kg-h

v m(O2) :

Maximum respiration rate for O2 consumption, ml/kg-h

W :

Weight of litchi fruit, kg

Y O2 :

Oxygen concentration, decimal

Z CO2 :

Carbon dioxide concentration, decimal

References

  • Anon (2006). Agricultural statistics at a glace. New Delhi, India: IFFCO, Arihant Offset.

    Google Scholar 

  • Bhande, S. D., Ravindran, M. R., & Goswami, T. K. (2008). Respiration rates of banana fruits under aerobic conditions at different storage temperatures. Journal of Food Engineering, 87(1), 116–23. doi:10.1016/j.jfoodeng.2007.11.019.

    Article  Google Scholar 

  • Cameron, A. C., Boylan-Pett, W., & Lee, J. (1989). Design of modified atmosphere packaging systems: modeling oxygen concentrations within sealed packages of tomato fruits. Journal of Food Science, 54(6), 1413–1415. doi:10.1111/j.1365-2621.1989.tb05123.x.

    Article  Google Scholar 

  • Chadha, K. L., & Rajkot, M. S. (1967). Studies on the floral biology, fruit set and its retention and quality of some litchi varieties. Indian Journal of Horticulture, 27, 121–127.

    Google Scholar 

  • Cornish-Bowden, A. (1979). Fundamentals of enzyme kinetics. London: Butterworth Ltd.

    Google Scholar 

  • Dash, K. K. (2007). Modelling of respiration kinetics of fruits for control atmosphere storage and modified atmosphere storage. Unpublished M.Tech Thesis, Department of Agriculture and Food Engineering, Indian Institute of Technology, Kharagpur, India.

  • Fonseca, S. C., Oliveira, F. A. R., & Brecht, J. K. (2002). Modelling of respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. Journal of Food Engineering, 52, 99–119. doi:10.1016/S0260-8774(01)00106-6.

    Article  Google Scholar 

  • Giusti, A. M., Enrico, B., & Carlo, C. (2008). Exploring new frontiers in total food quality definition and assessment: from chemical to neurochemical properties. Food & Bioprocess Technology, 1, 130–142. doi:10.1007/s11947-007-0043-9.

    Article  Google Scholar 

  • Hagger, P. E., Lee, D. S., & Yam, K. L. (1992). Application of an enzyme kinetic based respiration model to closed system experiments for fresh produce. Journal of Food Process Engineering, 15, 143–157. doi:10.1111/j.1745-4530.1992.tb00148.x.

    Article  Google Scholar 

  • Hong, S. I., & Kim, D. M. (2001). Influence of oxygen concentration and temperature on respiratory characteristics of fresh cut green onion. International Journal of Food Science and Technology, 36(3), 283–289. doi:10.1046/j.1365–2621.2001.00456.x.

    Article  CAS  Google Scholar 

  • Kadam, S. S., & Deshpande, S. S. (1995). Lychee. In D. D. Salunkhe, & S. S. Kadam (Eds.), Handbook of fruit science and technology (pp. 435–443). New York: Marcel Dekker Inc.

    Google Scholar 

  • Kader, A. A., Zagory, D., & Kerbel, E. L. (1989). Modified atmosphere packaging of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 28(1), 1–30.

    Article  CAS  Google Scholar 

  • Kays, S. J. (1991). Metabolic Processes in Harvested Products Respiration. In Post Harvest Physiology of Perishable Plant Products. New York: Van Nostrand Reinhold Publication.

  • Lakakul, R., Beaudry, R. M., & Hernandez, R. J. (1999). Modelling respiration of apple slices in modified atmosphere packages. Journal of Food Science, 64(1), 105–110. doi:10.1111/j.1365-2621.1999.tb09870.x.

    Article  CAS  Google Scholar 

  • Lee, D. S., Hagger, P. E., Lee, J., & Yam, K. L. (1991). Model for fresh produce respiration in modified atmosphere based on principles of enzyme kinetics. Journal of Food Science, 56(6), 1580–1585. doi:10.1111/j.1365-2621.1991.tb08645.x.

    Article  CAS  Google Scholar 

  • Linus, U. O., Al-Ani, M. R., & Al-Shuaibi, Y. S. (2008). Physico-chemical Properties, Vitamin C Content, and Antimicrobial Properties of Pomegranate Fruit (Punica granatum L.). Food Bioprocess Technol. doi:10.1007/s11947-008-0095-5

  • Mahajan, P. V. (2001). Studies on Control atmosphere storage for apple and litchi using liquid nitrogen. Unpublished Ph.D. Thesis, Department of Agriculture and Food Engineering, Indian Institute of Technology, Kharagpur, India.

  • Mahajan, P. V., & Goswami, T. K. (2001). Enzyme kinetics based modeling of respiration rate for apple. Journal of Agricultural Engineering Research, 79(4), 399–406. doi:10.1006/jaer.2001.0718.

    Article  Google Scholar 

  • Mahajan, P. V., Oliveira, F. A. R., Montanez, J. C., & Frias, J. (2007). Development of user-friendly software for design of modified atmosphere packaging for fresh and fresh-cut produce. Innovative Food Science & Emerging Technologies, 8, 84–92. doi:10.1016/j.ifset.2006.07.005.

    Article  Google Scholar 

  • Martins, R. C., Lopes, V. V., Vicente, A. A., & Teixeira, J. A. (2008). Computational shelf-life dating: complex systems approaches to food quality and safety. Food & Bioprocess Technology, 1, 207–222. doi:10.1007/s11947-008-0071-0.

    Article  Google Scholar 

  • McLaughlin, C. P., & O’Beirne, D. (1999). Respiration rate of a dry coleslaw mix as affected by storage temperature and respiratory gas concentrations. Journal of Food Science, 64(1), 116–119. doi:10.1111/j.1365-2621.1999.tb09872.x.

    Article  CAS  Google Scholar 

  • Menon Rekha Ravindra, , & Goswami, T. K. (2008). Modelling of respiration rates of green matures mango under aerobic conditions. Biosystems Engineering, 99(2), 239–248. doi:10.1016/j.biosystemseng.2007.10.005.

    Article  Google Scholar 

  • Meyer, B. S., Anderson, D. B., Bohling, R. H., & Fratianne, D. G. (1973). Introduction to plant physiology (2nd ed.). Princeton, New Jersey, USA: Van Nostrand.

    Google Scholar 

  • Peppelenbos, H. W., & Van’t Leven, J. (1996). Evaluation of four types of inhibition for modeling the influence of carbon dioxide on oxygen consumption fruits and vegetables. Postharvest Biology and Technology, 7, 27–40. doi:10.1016/0925-5214(96)80995-1.

    Article  CAS  Google Scholar 

  • Prasad, M. (1995). Development of modified atmosphere packaging system with permselective films for storage of red delicious apples. Unpublished Ph.D. Thesis, Department of Agriculture and Food Engineering, Indian Institute of Technology, Kharagpur, India.

  • Quevedo, R. A., Aguilera, J. M., & Pedreschi, F. (2008). Color of salmon fillets by computer vision and sensory panel. Food Bioprocess Technol. doi:10.1007/s11947-008-0106-6.

  • Raghavrao, D. (1983). Statistical technique: Agricultural and biological research. New Delhi: Oxford IBH Publishing Co.

    Google Scholar 

  • Rangana, S. (1995). Hand book of analysis and quality control for fruits and vegetable products. New Delhi, India: Tata McGrow pub. Co.

    Google Scholar 

  • Singh, H. P., & Babita, S. (2002). Lychee production in India. In M. K. Papdemetriou, & F. J. Dent (Eds.), Lychee production in the Asia-Pacific region (pp. 55–77). Bangkok, Thailand: Food and Agriculture Organization of the United Nations Regional Office for Asia and Pacific (FAO/RAP publications).

    Google Scholar 

  • Sivakumar, D., & Korsten, L. (2006). Influence of modified atmosphere packaging and post harvest treatments on quality retention of litchi cv. Mauritius. Postharvest Biology and Technology, 41, 135–142. doi:10.1016/j.postharvbio.2006.03.007.

    Article  CAS  Google Scholar 

  • Talasila, P. C., Chau, K. V., & Brecht, J. K. (1992). Effects of gas concentrations and temperature on O2 consumption of strawberries. Transactions of ASAE, 35(1), 221–224.

    Google Scholar 

  • Tian, S. P., Li, B. Q., & Xu, Y. (2005). Effect of O2 and CO2 concentrations on physiology and quality of litchi fruits in storage. Food Chemistry, 91, 659–63. doi:10.1016/j.foodchem.2004.06.038.

    Article  CAS  Google Scholar 

  • Toledo, R. T. (1991). Kinetics of chemical reactions in foods. Fundamentals of food processing engineering. New York: Chapman and Hall Inc.

    Google Scholar 

  • Wills, R. B. H., McGlasson, W. B., Graham, D., Lee, T. H., & Hall, E. G. (1989). Post harvest: An introduction to the physiology and Handling of Fruits and Vegetables. New York: Chapman and Hall, Inc.

    Google Scholar 

  • Yang, C. C., & Chinnan, M. S. (1988). Modeling the effect of O2 and CO2 on respiration and quality of stored tomatoes. Transactions of ASAE, 30(3), 920–925.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Goswami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangaraj, S., Goswami, T.K. Modeling of Respiration Rate of Litchi Fruit under Aerobic Conditions. Food Bioprocess Technol 4, 272–281 (2011). https://doi.org/10.1007/s11947-008-0145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0145-z

Keywords

Navigation