Skip to main content
Log in

Starch digestibility, polyphenol contents and in vitro alpha amylase inhibitory properties of two varieties of cocoyam (Colocassia esculenta and Xanthosoma mafafa) as affected by cooking

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The effect of cooking (boiling) on the starch digestibility, polyphenol contents and in vitro α-amylase inhibitory properties of two varieties of cocoyam: Colocassia esculenta (taro) and Xanthosoma mafafa (Tania) were investigated. The total starch contents of the raw and cooked tubers ranged from 25.3 to 35.6 g 100 g−1; resistant starch ranged from 9.7 to 20.9 g 100 g−1; digestible starch ranged from 11.7 to 24.2 g 100 g−1. The starch digestibility of the raw and cooked tubers ranged from 35.89 to 71.38% while their rapidly digestible starch values (expressed as g 100 g−1 of total starch) ranged from 20 to 32 g 100 g−1. The raw tubers contained considerable amounts of phenols and flavonoids and boiling of the tubers retained their phenolic and flavonoid contents. The aqueous extracts of the raw and cooked tubers demonstrated considerable α-amylase inhibition properties (32.47–46.62% over a concentration range of 10–50 mg mL−1) under in vitro conditions but which were lower than that of the antidiabetic drug—acarbose that had 69.08% inhibition of alpha amylase activity over a range of concentration of 2–10 mg mL−1. The study showed that the raw and cooked forms of the cocoyam varieties had low digestibility of their starches and exerted considerable inhibition of α-amylase activity under in vitro conditions which suggests the potential usefulness of the boiled forms of these cocoyam varieties as functional foods for people with type 2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Barcelo, C. Aedo, S. Rajpathak, S. Robles, Bull. World Health Org. 81, 44 (2003)

    Google Scholar 

  2. American Diabetes Association, Diabetes Care 34, S62–S69 (2011)

    Article  Google Scholar 

  3. International Diabetes Federation, IDF Diabetes Atlas, 7th edn (Brussels: International Diabetes Federation, 2015). http://www.diabetesatlas.org

  4. C.O. Eleazu, Afr. Health Sci. 16, 468–479 (2016)

    Article  Google Scholar 

  5. C. Eleazu, I. Ezekwibe, M. Egbe, S. Saidu, K. Eleazu, C. Egedigwe, Acta Sci. Pol. Technol. Aliment 16, 93–99 (2017)

    Article  Google Scholar 

  6. B. Elya, R. Handayani, R. Sauriasari, A. Azizahwati, U.S. Hasyyati, I.T. Permana, Y.I. Permatasari, Pak. J. Biol. Sci 18, 279–284 (2015)

    Article  CAS  Google Scholar 

  7. A.G. Kirsty, S. Samir, G.F. Catherine, J.G. Patricia, K.J. Stuart, J.Q. Kenneth, J. Sci. Food Agric. 88, 652–658 (2008)

    Article  Google Scholar 

  8. C.O. Eleazu, K.C. Eleazu, M.A. Iroaganachi, W. Kalu, J. Food Biochem. 41, e12355 (2017)

  9. L.L. Niba, Int. J. Food Sci. Nutr. 54, 97–109 (2003)

    Article  CAS  Google Scholar 

  10. A. Chatterjee, S.C. Pakrashi, The Treatise on Indian Medicinal Plants, vol. 5 (New Delhi: National Institute of Science Communication, 1997), pp. 99–100

    Google Scholar 

  11. O.L. Mwenye, M.T. Herselman, L. Benesi, F.P. Chipungu, in Second RUFORUM Biennial Conference Meeting Entebbe, Uganda (2010), pp. 193–199

  12. K.R. Kirtikar, B.D. Basu, Indian Medicinal Plants (Dehradun: Oriental Enterprises, 2011), pp. 3598–3602

    Google Scholar 

  13. S. Simsek, S.N. El, Carbohydr. Polym. 90, 1204–1209 (2012)

    Article  CAS  Google Scholar 

  14. E.J. Rodríguez-Sosa, M. Gonsález, J. Agric. Univ. Puerto Rico 61, 26–31 (1977)

    Google Scholar 

  15. C.O. Eleazu, P.N. Okafor, I.I. Ijeh, Asian Pac. J. Trop. Dis. 4, S705–S711 (2014)

    Article  CAS  Google Scholar 

  16. K. Iwai, Plant Foods Hum. Nutr. 63, 163 (2008)

    Article  CAS  Google Scholar 

  17. I. Goni, A. Garcia-Alonso, F. Saura-Calixto, Nutr. Res. 17, 427–437 (1997)

    Article  CAS  Google Scholar 

  18. P.M. Rosin, F.M. Lajolo, E.W. Menezes, J. Food Compos. Anal. 15, 367–377 (2002)

    Article  CAS  Google Scholar 

  19. L. Sęczyk, M. Świeca, D. Dziki, A. Anders, U. Gawlik-Dziki, Food Chem. 214, 32–38 (2017)

    Article  Google Scholar 

  20. C.O. Eleazu, K.C. Eleazu, M. Iroaganachi, Innov. Food Sci. Emerg. Technol. 37, 37–43 (2016)

    Article  CAS  Google Scholar 

  21. M. Segura, C.M. Rosell, Plant Foods Hum. Nutr. 66, 224–230 (2011)

    Article  Google Scholar 

  22. S. Hedieh, N. Marjan, A. Gholamreza, S. Parisa, R.G. Ahmad, K. Mahdieh, S. Soodabeh, J. Diabetes Metab. Disord. 13, 114 (2014)

    Article  Google Scholar 

  23. H. Ali, P. Houghton, A. Soumyanath, J. Ethnopharmacol. 107, 449–455 (2006)

    Article  Google Scholar 

  24. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Methods Enzymol. 299, 152–178 (1999)

    Article  CAS  Google Scholar 

  25. A.A.L. Ordonez, J.D. Gomez, M.A. Vattuone, M.I. Isla, Food Chem. 97, 452–458 (2006)

    Article  CAS  Google Scholar 

  26. M. Piecyk, R. Wołosiak, B. Drużynska, E. Worobiej, Food Chem. 135, 1057–1064 (2012)

    Article  CAS  Google Scholar 

  27. V.D. Capriles, K.D. Coelho, A.C. Guerra-Matias, J.A.G. Areas, J. Food Sci. 73, H160–H164 (2008)

    Article  CAS  Google Scholar 

  28. M.G. Sajilata, R.S. Singhal, P.R. Kulkarni, Compr. Rev. Food Sci. Food Saf. 5, 1–17 (2006)

    Article  CAS  Google Scholar 

  29. M. Frei, P. Siddhuraju, K. Becker, Food Chem. 83, 395–402 (2003)

    Article  CAS  Google Scholar 

  30. H. Chung, D. Shin, S. Lim, Food Res. Int. 41, 579–585 (2008)

    Article  CAS  Google Scholar 

  31. H.N. Englyst, G.J. Hudson, Food Chem. 57, 15–21 (1996)

    Article  CAS  Google Scholar 

  32. H. Laoufi, N. Benariba, S. Adjdir, R. Djaziri, J. Appl. Pharm. Sci. 7, 191–198 (2017)

    Google Scholar 

  33. N. Uddin, R. Hasan, M. Hossain, A. Sarker, N. Hasan, M. Islam, M.H. Chowdhury, S. Rana, Asian Pac. J. Trop. Biomed. 4, 473–479 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the technical staff of the Department of Chemistry/Biochemistry, Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinedum Eleazu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleazu, C., Sampson, A., Saidu, S. et al. Starch digestibility, polyphenol contents and in vitro alpha amylase inhibitory properties of two varieties of cocoyam (Colocassia esculenta and Xanthosoma mafafa) as affected by cooking. Food Measure 12, 1047–1053 (2018). https://doi.org/10.1007/s11694-018-9720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9720-9

Keywords

Navigation