Advertisement

Physico-chemical, morphological, pasting and thermal properties of stem flour and starch isolated from kithul palm (Caryota urens) grown in valley of Western Ghats of India

  • Cherakkathodi Sudheesh
  • Kappat Valiyapeediyekkal SunoojEmail author
  • Johnsy George
  • Sunny Kumar
  • Vallayil Appukuttan Sajeevkumar
Original Paper

Abstract

Starch is the major component of kithul flour (66%) obtained from the trunk of kithul palm (Caryota urens). In this study, physicochemical, morphological, pasting and thermal properties of kithul flour and starch were compared. It is a high amylose starch (38.5%). Kithul starch has higher phosphorous content than some of the tubers and legume starches. Kithul starch is oval in shape with smooth surface and showed higher swelling index and solubility than flour. Kithul starch showed type A crystalline pattern with 34.2% relative crystallinity. Water and oil absorption capacity of kithul flour is higher than that of starch. Kithul starch showed higher pasting properties such as peak, trough, setback and final viscosity as compared to flour. Sharp increase in peak viscosity showed rapid swelling character of kithul flour and starch. As compared to flour, kithul starch gel has higher firmness. Kithul starch showed higher gelatinization (onset, peak and conclusion) temperature and enthalpy of gelatinization as compared to flour.

Keywords

Kithul flour Kithul starch Morphological characters Pasting properties Gel texture Gelatinization properties 

Notes

Acknowledgements

The authors are thankful to the Department of Food Science and Technology and Central Instrumentation Facility, Pondicherry University for providing laboratory and instrumental facilities.

References

  1. 1.
    P. Rajyalakshmi, Nat. Prod. Radiance 3, 144 (2004)Google Scholar
  2. 2.
    E. Arendt, E. K., & Zannini, in (Woodhead Publishing Limited., Cambridge, 2013)Google Scholar
  3. 3.
    D.V.D. Grommers, H. E., & Krogt, Potato starch: production, modification and uses, 3rd edn. (Academic Press, San Diego, 2006)Google Scholar
  4. 4.
    F. Zhu, Carbohydr. Polym. 122, 456 (2015)CrossRefGoogle Scholar
  5. 5.
    F. Zhu, S. Wang, Trends Food Sci. Technol. 36, 68 (2014)CrossRefGoogle Scholar
  6. 6.
    G.E.M. Wimalasiri, P. Ranasinghe, D.M.A. Gunaratne, L.P.V. Arachchi, Ital. Oral Surg. 6, 181 (2016)Google Scholar
  7. 7.
    A. Gunaratne, K. Wu, L. Collado, R.Y. Gan, L.V. Arachchi, K. Kumara, S.M. Pathirana, H. Corke, Int. J. Food Sci. Technol. 51, 2647 (2016)CrossRefGoogle Scholar
  8. 8.
    W.J. Lim, Y.T. Liang, P. Seib, C.S. Rao, Cereal Chem. 69, 233 (1992)Google Scholar
  9. 9.
    AOAC, in Assoc. Off. Anal., 15th ed. (Washington DC, 1990)Google Scholar
  10. 10.
    I.H. Williams, F.D. Kuzina, Cereal Chem. 47, 411 (1970)Google Scholar
  11. 11.
    I.A. Wani, M. Jabeen, H. Geelani, F.A. Masoodi, I. Saba, S. Muzaffar, Food Hydrocoll. 35, 253 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Bashir, T.L. Swer, K.S. Prakash, M. Aggarwal, LWT Food Sci. Technol. 76, 131 (2017)CrossRefGoogle Scholar
  13. 13.
    I.A. Wani, D.S. Sogi, B.S. Gill, Int. J. Food Sci. Technol. 48, 771 (2013)CrossRefGoogle Scholar
  14. 14.
    N.L. Vanier, E. Da Rosa Zavareze, V.Z. Pinto, B. Klein, F.T. Botelho, A.R.G. Dias, M.C. Elias, Food Chem. 131, 1255 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Li, F. Zhu, Food Chem. 221, 1560 (2017)CrossRefGoogle Scholar
  16. 16.
    S.A. Mir, S.J.D. Bosco, Food Chem. 157, 448 (2014)CrossRefGoogle Scholar
  17. 17.
    S.-T. Lim, T. Kasemsuwan, J.-L. Jane, Cereal Chem. 71, 488 (1994)Google Scholar
  18. 18.
    U. Ahmadu, O. Agbomeji, M. Yahya, O.A. Odeku, Agric. Nat. Resour. 52, 79 (2018)Google Scholar
  19. 19.
    M.Z. Nor Nadiha, A. Fazilah, R. Bhat, A.A. Karim, Food Chem. 121, 1053 (2010)CrossRefGoogle Scholar
  20. 20.
    L. Wang, J. Guo, R. Wang, C. Shen, Y. Li, X. Luo, Y. Li, Z. Chen, Cereal Chem. 93, 593 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Liu, X. Guo, W. Li, X. Wang, M. Lv, Q. Peng, M. Wang, Carbohydr. Polym. 132, 237 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Singh, N. Singh, R. Ezekiel, A. Kaur, Carbohydr. Polym. 83, 1521 (2011)CrossRefGoogle Scholar
  23. 23.
    C. Lerdluksamee, K. Srikaeo, J.A.M. Tutusaus, J.G. Diéguez, Carbohydr. Polym. 97, 482 (2013)CrossRefGoogle Scholar
  24. 24.
    G.E. Cone, & J. W. Wolters, Starch - Stärke 42, 298 (1990)CrossRefGoogle Scholar
  25. 25.
    C.F. Franco, M.L.C. Preto, & S. J. R. Ciacco, Starch - Stärke 44, 113 (1992)CrossRefGoogle Scholar
  26. 26.
    C.K. Riley, A.O. Wheatley, I. Hassan, M.H. Ahmad, E.Y.S.A. Morrison, H.N. Asemota, Starch/Staerke 56, 69 (2004)CrossRefGoogle Scholar
  27. 27.
    S.C. Alcázar-alay, M. Angela, A. Meireles, Food Sci. Technol. Int. 35, 215 (2015)CrossRefGoogle Scholar
  28. 28.
    F. Zeng, F. Ma, F. Kong, Q. Gao, S. Yu, Food Chem. 172, 92 (2015)CrossRefGoogle Scholar
  29. 29.
    K.O. Falade, A.S. Christopher, Food Hydrocoll. 44, 478 (2015)CrossRefGoogle Scholar
  30. 30.
    K.O. Falade, M. Semon, O.S. Fadairo, A.O. Oladunjoye, K.K. Orou, Food Hydrocoll. 39, 41 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Kraithong, S. Lee, S. Rawdkuen, J. Cereal Sci. 79, 259 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Jitngarmkusol, J. Hongsuwankul, K. Tananuwong, Food Chem. 110, 23 (2008)CrossRefGoogle Scholar
  33. 33.
    M. Gidley, in Gums Stab. Food Ind., edited by G.O. Phillips & P.A. Williams). (Oxford University Press, 1990), p. 89–101Google Scholar
  34. 34.
    R. F. Tester, & W. R. Morrison, Cereal Chem. 67, 551 (1990)Google Scholar
  35. 35.
    D. D. Bagley, & E. B. Christianson, Starch - Stärke 35, 500 (1982)Google Scholar
  36. 36.
    K.O. Adebowale, B.I. Olu-Owolabi, E.K. Olawumi, O.S. Lawal, Ind. Crops Prod. 21, 343 (2005)CrossRefGoogle Scholar
  37. 37.
    K. Kaur, N. Singh, Food Chem. 71, 511 (2000)CrossRefGoogle Scholar
  38. 38.
    J. Bao, Z. Ao, J.L. Jane, Starch/Staerke 57, 480 (2005)CrossRefGoogle Scholar
  39. 39.
    S. Yu, Y. Ma, L. Menager, D.W. Sun, Food Bioprocess Technol. 5, 626 (2012)CrossRefGoogle Scholar
  40. 40.
    W.K. Jane, J. Shen, I. Chen, J. Lim, S. Kasemsuwan, & T. Nip, Cereal Chem. 69, 528 (1992)Google Scholar
  41. 41.
    et al. J. Jane, Y.Y. Chen, L.F. Lee, A.E. McPherson, K.S. Wong, M. Radosavljevic, Cereal Chem. 76, 629 (1999)CrossRefGoogle Scholar
  42. 42.
    P. V. Hung, & N. Morita, Carbohydr. Polym. 61, 314 (2005)CrossRefGoogle Scholar
  43. 43.
    S. Moorthy, Starch/Stärke 54, 559 (2002)CrossRefGoogle Scholar
  44. 44.
    E. Pérez-Pacheco, V.M. Moo-Huchin, R.J. Estrada-León, A. Ortiz-Fernández, L.H. May-Hernández, C.R. Ríos-Soberanis, D. Betancur-Ancona, Carbohydr. Polym. 101, 920 (2014)CrossRefGoogle Scholar
  45. 45.
    N. Singh, K.S. Sandhu, M. Kaur, J. Food Eng. 63, 441 (2004)CrossRefGoogle Scholar
  46. 46.
    R.F. Tester, & W.R. Morrison, Cereal Chem. 69, 558 (1990)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and TechnologyPondicherry UniversityPuducherryIndia
  2. 2.Food Engineering and Packaging DivisionDefence Food Research LaboratoryMysoreIndia

Personalised recommendations