Skip to main content
Log in

Quantification of soybean oil adulteration in extra virgin olive oil using portable raman spectroscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Extra virgin olive oil is produced through either a cold press procedure or a centrifugation with no thermal and chemical treatments and it is considered as the best quality oil under the category of olive oils. The superior properties of olive oil due to its rich in phenolic and antioxidant content and its contribution to prevent several health problems has increased the demand for olive oil over the years. Consequently, it is nowadays sold at remarkably higher price than regular vegetable oils in the market. Unfortunately, extra virgin olive oil (EVOO) has been adulterated with other cheap oils due to potential high commercial profit. Even though, there are methods available to detect the adulteration in EVOO (such as chromatographic methods and PCR), alternative simpler and faster methods are being studied. In this study, performance of portable Raman spectroscopy to quantify soybean oil (SO) adulteration [up to 25 % (w/w)] in EVOO has been evaluated. Partial Least Square Regression (PLSR) calibration models were developed and both internally (using cross-validation, leave-one-out approach) and externally (using an independent sample set) validated. The model gave standard error of prediction (SEP) of 1.34 % (w/w) SO in EVOO and correlation coefficient of prediction (rPred) of 0.99. Additionally, the residual predictive deviation (RPD) value calculated for the model was found to be 5.71, indicating that the model was considered as “good” and could be used for routine analysis and quality control applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.N. Franco, T. Galeano-Díaz, Ó. J.G. López, Fernández-Bolaños, J. Sánchez, C. De Miguel, M.V. Gill, D. Martín-Vertedor, Food Chem. 163, 289–298 (2014)

    Article  CAS  Google Scholar 

  2. S. D’Angelo, D. Ingrosso, V. Migliardi, A. Sorrentino, G. Donnarumma, A. Baroni, L. Masella, M.A. Tufano, M. Zappia, P. Galletti, Free Radic. Biol Med. 38(7), 908–919 (2005)

    Article  Google Scholar 

  3. F. Soltanipoor, M. Delaram, S. Taavoni, H. Haghani, Complement Ther. Med. 20(5), 263–266 (2012)

    Article  CAS  Google Scholar 

  4. M. Kratzb, P. Cullenc, Eur. J. Lipid Sci. Technol 104, 698–705 (2002)

    Article  Google Scholar 

  5. J.L. Harwood, P. Yaqoob, Eur. J. Lipid Sci. Technol 104(9–10), 685–697 (2002)

    Article  CAS  Google Scholar 

  6. S. Lopez, B. Bermudez, S. Montserrat-de la Paz, S. Jaramillo, L.M. Varela, A. Ortega-Gomez, F.J. Muriana, Biochim. Biophys. Acta Biomembr. 1838(6), 1638–1656 (2014)

    Article  CAS  Google Scholar 

  7. S. Lamy, A. Ouanouki, R. Béliveau, R.R. Desrosiers, Exp. Cell Res 322(1), 89–98 (2014)

    Article  CAS  Google Scholar 

  8. T.O. Mendes, R.A. da Rocha, B.L. Porto, M.A. de Oliveira, V.D.C. dos Anjos, M.J. Bell, Food Anal. Methods 8(9), 2339–2346 (2015)

    Article  Google Scholar 

  9. H. Yang, J. Irudayaraj, JAOCS 78(9), 889–895 (2001)

    CAS  Google Scholar 

  10. IOOC (International Olive Oil Council). Trade standard applying to olive oil and olive–pomace oil. COI/T. 15/NC No 3/Rev. 7, May (2013)

  11. FAOSTAT (Food and Agriculture Organization of the United Nations Statistics Division). http://faostat3.fao.org/browse/Q/QD/E. Accessed 13 June 2016

  12. M. Lisa, M. Holcapek, M. Bohac, J. Agric. Food Chem. 57(15), 6888–6898 (2009)

    Article  CAS  Google Scholar 

  13. H. Jabeur, A. Zribi, J. Makni, A. Rebai, R. Abdelhedi, M. Bouaziz, J. Agric. Food Chem. 62(21), 4893–4904 (2014)

    Article  CAS  Google Scholar 

  14. H. Jabeur, A. Zribi, M. Bouaziz, Food Anal. Methods 9(3), 712–723 (2015)

    Article  Google Scholar 

  15. M. Vietina, C. Agrimonti, N. Marmiroli, Food Chem. 141(4), 3820–3826 (2013)

    Article  CAS  Google Scholar 

  16. G. Fragaki, A. Spyros, G. Siragakis, E. Salivaras, P. Dais, J. Agric. Food Chem. 53(8), 2810–2816 (2005)

    Article  CAS  Google Scholar 

  17. K.I. Poulli, G.A. Mousdis, C.A. Georgiou, Anal. Bioanal. Chem. 386, 1571–1575 (2006)

    Article  CAS  Google Scholar 

  18. Y. Xu, H. Li, Q. Chen, J. Zhao, Q. Ouyang, Int. J. Food Prop. 18(9), 2085–2098 (2015)

    Article  CAS  Google Scholar 

  19. T. Mu, S. Chen, Y. Zhang, H. Chen, P. Guo, F. Meng, Food Anal. Methods 9(1), 275–279 (2016)

    Article  Google Scholar 

  20. J. Van Durme, J. Vandamme, Food Chem. 208, 185–191 (2016)

    Article  Google Scholar 

  21. L. Jiang, H. Zheng, H. Lu, J. Food Sci. Technol. 52(1), 479–485 (2015)

    Article  CAS  Google Scholar 

  22. X. Sun, W.L.X. Lin, Q. Shen, H. Luo, Anal. Methods 7(9), 3939–3945 (2015)

    Article  CAS  Google Scholar 

  23. I.M. Apetrei, C. Apetrei, Comput. Electron. Agric. 108, 148–154 (2014)

    Article  Google Scholar 

  24. V. Baeten, M. Meurens, M.T. Morales, R. Aparicio, J. Agric. Food Chem. 44(8), 2225–2230 (1996)

    Article  CAS  Google Scholar 

  25. M.Q. Zou, X.F. Zhang, X.H. Qi, H.L. Ma, Y. Dong, C.W. Liu, X. Guo, H. Wang, J. Agric. Food Chem. 57(14), 6001–6006 (2009)

    Article  CAS  Google Scholar 

  26. X. Zhang, X. Qi, M. Zou, F. Liu, Anal. Lett. 44(12), 2209–2220 (2011a)

  27. X.F. Zhang, M.Q. Zou, X.H. Qi, F. Liu, C. Zhang, F. Yin, J. Raman Spectrosc. 42(9), 1784–1788 (2011b)

  28. W. Dong, Y. Zhang, B. Zhang, X. Wang, Anal. Methods 4(9), 2772–2777 (2012)

    Article  CAS  Google Scholar 

  29. D.M. Haaland, E.V. Thomas, Anal. Chem. 60, 1193–1202 (1988)

    Article  CAS  Google Scholar 

  30. S. Dejong, J. Chemom. 7, 551–557 (1993)

    Article  CAS  Google Scholar 

  31. L. Moseholm, Environ. Pollut. 53, 313–331 (1988)

    Article  CAS  Google Scholar 

  32. P.C. Williams, in Near-infrared technology in the agricultural and food industries, ed. by P.C. Williams, K.H. Norris (American Association of Cereal Chemistry, St. Paul, 2001), p. 169

    Google Scholar 

  33. R. Leardi, L. Nørgaard, J. Chemometr. 18(11), 486–497 (2004)

    Article  CAS  Google Scholar 

  34. L. Zhang, M.A. Schultz, R. Cash, D.M. Barrett, M.J. McCarthy, Food Control 40(1), 214–223 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Funding from Higher Education Council (YÖK) as a visitor scientist by overseas scholarship (under Higher Education Law No. 2547 under Article 39) is acknowledged. The honorable Prof. Dr. Randy Wehling (from University of Nebraska-Lincoln, USA) is thanked for opening his lab and allowing the use of his equipment. Brandon Holder is further thanked for his friendship and help in the lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulgun Yildiz Tiryaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz Tiryaki, G., Ayvaz, H. Quantification of soybean oil adulteration in extra virgin olive oil using portable raman spectroscopy. Food Measure 11, 523–529 (2017). https://doi.org/10.1007/s11694-016-9419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9419-8

Keywords

Navigation