Systems and Synthetic Biology

, Volume 8, Issue 1, pp 27–39 | Cite as

Integrative immunoinformatics for Mycobacterial diseases in R platform

  • Rupanjali Chaudhuri
  • Deepika Kulshreshtha
  • Muthukurussi Varieth Raghunandanan
  • Srinivasan Ramachandran
Research Article


The sequencing of genomes of the pathogenic Mycobacterial species causing pulmonary and extrapulmonary tuberculosis, leprosy and other atypical mycobacterial infections, offer immense opportunities for discovering new therapeutics and identifying new vaccine candidates. Enhanced RV, which uses additional algorithms to Reverse Vaccinology (RV), has increased potential to reduce likelihood of undesirable features including allergenicity and immune cross reactivity to host. The starting point for MycobacRV database construction includes collection of known vaccine candidates and a set of predicted vaccine candidates identified from the whole genome sequences of 22 mycobacterium species and strains pathogenic to human and one non-pathogenic Mycobacterium tuberculosis H37Ra strain. These predicted vaccine candidates are the adhesins and adhesin-like proteins obtained using SPAAN at Pad > 0.6 and screening for putative extracellular or surface localization characteristics using PSORTb v.3.0 at very stringent cutoff. Subsequently, these protein sequences were analyzed through 21 publicly available algorithms to obtain Orthologs, Paralogs, BetaWrap Motifs, Transmembrane Domains, Signal Peptides, Conserved Domains, and similarity to human proteins, T cell epitopes, B cell epitopes, Discotopes and potential Allergens predictions. The Enhanced RV information was analysed in R platform through scripts following well structured decision trees to derive a set of nonredundant 233 most probable vaccine candidates. Additionally, the degree of conservation of potential epitopes across all orthologs has been obtained with reference to the M. tuberculosis H37Rv strain, the most commonly used strain in M. tuberculosis studies. Utilities for the vaccine candidate search and analysis of epitope conservation across the orthologs with reference to M. tuberculosis H37Rv strain are available in the mycobacrvR package in R platform accessible from the “Download” tab of MycobacRV webserver. MycobacRV an immunoinformatics database of known and predicted mycobacterial vaccine candidates has been developed and is freely available at


Mycobacteria Vaccine Reverse Vaccinology Enhanced RV 



SR thanks grants (BSC0121) from Council of Scientific and Industrial Research (CSIR). RC thanks The Indian Council of Medical Research for fellowship. Funding for IT infrastructure through CSIR-Institute of Genomics and Integrative Biology resources is acknowledged.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11693_2014_9135_MOESM1_ESM.pdf (122 kb)
Supplementary material 1 (PDF 122 kb)
11693_2014_9135_MOESM2_ESM.tif (1 mb)
Supplementary material 2 (TIFF 1036 kb)
11693_2014_9135_MOESM3_ESM.tif (771 kb)
Supplementary material 3 (TIFF 770 kb)
11693_2014_9135_MOESM4_ESM.doc (34 kb)
Supplementary material 4 (DOC 34 kb)
11693_2014_9135_MOESM5_ESM.doc (34 kb)
Supplementary material 5 (DOC 33 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Andersen PH, Nielsen M, Lund O (2006) Prediction of residues in discontinuous B cell epitopes using protein 3D structures. Protein Sci 15:2358–2367Google Scholar
  3. Ansari FA, Kumar N, Bala Subramanyam M, Gnanamani M, Ramachandran S (2008) MAAP: malarial adhesins and adhesin-like proteins predictor. Proteins 70:659–666PubMedCrossRefGoogle Scholar
  4. Ariel N, Zvi A, Grosfeld H, Gat O, Inbar Y, Velan B, Cohen S, Shafferman A (2002) Search for potential vaccine candidate open reading frames in the Bacillus anthracis virulence plasmid pXO1: in silico and in vitro screening. Infect Immun 70:6817–6827PubMedCentralPubMedCrossRefGoogle Scholar
  5. Armitige LY, Jagannath C, Wanger AR, Norris SJ (2000) Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 68:767–778PubMedCentralPubMedCrossRefGoogle Scholar
  6. Baddeley A, Dean A, Dias HM, Falzon D et al (2013) World Health Organization Global Tuberculosis Report. Accessed 1 November 2013
  7. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 30. J Mol Biol 340:783–795PubMedCrossRefGoogle Scholar
  8. Bradley P, Cowen L, Menke M, King J, Berger B (2001) BETAWRAP: successful prediction of parallel beta-helices from primary sequence reveals an association with many microbial pathogens. Proc Natl Acad Sci USA 98:14819–14824PubMedCrossRefGoogle Scholar
  9. Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton KA, Mothé BR, Chisari FV, Watkins DI, Sette A (2005) Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57:304–314PubMedCrossRefGoogle Scholar
  10. Chakravarti DN, Fiske MJ, Fletcher LD, Zagursky RJ (2000) Application of genomics and proteomics for identification of bacterial gene products as potential vaccine candidates. Vaccine 19:601–612PubMedCrossRefGoogle Scholar
  11. Chaudhuri R, Ahmed S, Ansari FA, Singh HV, Ramachandran S (2008) MalVac: database of malarial vaccine candidates. Malar J 7:184PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chaudhuri R, Ansari FA, Raghunandanan MV, Ramachandran S (2011) FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genom 12:192CrossRefGoogle Scholar
  13. Dogra S, Narang T, Kumar B (2013) Leprosy–evolution of the path to eradication. Indian J Med Res 137:15–35PubMedGoogle Scholar
  14. Fiers MW, Kleter GA, Nijland H, Peijnenburg AA, Nap JP, Van RC (2004) Allermatch, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines. BMC Bioinform 5:133CrossRefGoogle Scholar
  15. Griffith DE (2010) Nontuberculous mycobacterial lung disease. Curr Opin Infect Dis 23:185–190PubMedCrossRefGoogle Scholar
  16. Ioerger TR, Koo S, No EG, Chen X, Larsen MH, Jacobs WR Jr, Pillay M, Sturm AW, Sacchettini JC (2009) Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS One 4:e7778PubMedCentralPubMedCrossRefGoogle Scholar
  17. Katoch VM (2004) Infections due to non-tuberculous mycobacteria (NTM). Indian J Med Res 120:290–304PubMedGoogle Scholar
  18. Kaufmann SH (2002) Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 61(Suppl 2):ii54–ii58PubMedGoogle Scholar
  19. Kaufmann SH (2011) Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect Dis 11:633–640PubMedCrossRefGoogle Scholar
  20. Khan AM, Miotto O, Heiny AT, Salmon J, Srinivasan KN, Nascimento EJ, Marques ET Jr, Brusic V, Tan TW, August JT (2007) A systematic bioinformatics approach for selection of epitope-based vaccine targets. Cell Immunol 244:141–147PubMedCentralCrossRefGoogle Scholar
  21. Kinhikar AG, Verma I, Chandra D, Singh KK, Weldingh K, Andersen P, Hsu T, Jacobs WR Jr, Laal S (2010) Potential role for ESAT6 in dissemination of M tuberculosis via human lung epithelial cells. Mol Microbiol 75:92–106PubMedCentralPubMedCrossRefGoogle Scholar
  22. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174PubMedCrossRefGoogle Scholar
  23. Kondrashov FA, Rogozin IB, Wolf YI and Koonin EV (2002) Selection in the evolution of gene duplications. Genome Biol 3:RESEARCH0008Google Scholar
  24. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338PubMedCrossRefGoogle Scholar
  25. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  26. Kulkarni-Kale U, Bhosle S and Kolaskar AS (2005) CEP: a conformational epitope prediction server. Nucleic Acids Res 33(Web Server issue):W168–W171Google Scholar
  27. Lienhardt C, Glaziou P, Uplekar M, Lönnroth K, Getahun H, Raviglione M (2012) Global tuberculosis control: lessons learnt and future prospects. Nat Rev Microbiol 10:407–416PubMedGoogle Scholar
  28. Lockwood DNJ (2007) Leprosy Clin Evid (Online) Apr 1; 2007 pii: 0915Google Scholar
  29. Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-30: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36(Web Server):W509–W512PubMedCentralPubMedCrossRefGoogle Scholar
  30. Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R et al (2005) Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 309:148–150PubMedCentralPubMedCrossRefGoogle Scholar
  31. Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D and Bryant SH (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 192–196Google Scholar
  32. Marinova D, Gonzola-Asensio J, Aguilo N, Martin C (2013) Recent developments in tuberculosis vaccines. Expert Rev Vaccines 12:1431–1438PubMedCrossRefGoogle Scholar
  33. Mayer KH, Dukes HC (2010) Synergistic pandemics: confronting the global HIV and tuberculosis epidemics. Clin Infect Dis 3:S67–S70CrossRefGoogle Scholar
  34. McCarthy AA (2005) Broad institute: bringing genomics to real-world medicine. Chem Biol 12:717–718PubMedCrossRefGoogle Scholar
  35. McShane H (2011) Tuberculosis vaccines: beyond bacille Calmette-Guerin. Philos Trans R Soc Lond B Biol Sci 366:2782–2789PubMedCrossRefGoogle Scholar
  36. Menozzi FD, Bischoff R, Fort E, Brennan MJ, Locht C (1998) Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin. Proc Natl Acad Sci USA 13:12625–12630CrossRefGoogle Scholar
  37. Merle CS, Cunha SS, Rodrigues LC (2010) BCG vaccination and leprosy protection: review of current evidence and status of BCG in leprosy control. Expert Rev Vaccines 9:209–222PubMedCrossRefGoogle Scholar
  38. Mora M, Veggi D, Santini L, Pizza M, Rappuoli R (2003) Reverse vaccinology. Drug Discov Today 8:459–464PubMedCrossRefGoogle Scholar
  39. Moreno-Hagelsieb G, Latimer K (2008) Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24:319–324PubMedCrossRefGoogle Scholar
  40. Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui HH, Grey H, Sette A (2006) A consensus epitope prediction approach identifies the breadth of murine T(CD8 +)-cell responses to vaccinia virus. Nat Biotechnol 24:817–819PubMedCrossRefGoogle Scholar
  41. Nackers F, Dramaix M, Johnson RC, Zinsou C, Robert A, de Biurrun Bakedano E, Glynn JR, Portaels F, Tonglet R (2006) BCG vaccine effectiveness against Buruli ulcer: a case-control study in Benin. Am J Trop Med Hyg 75:768–774PubMedGoogle Scholar
  42. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175PubMedGoogle Scholar
  43. Patronov A, Doytchinova I (2013) T-cell epitope vaccine design by immunoinformatics. Open Biol 3:120139PubMedCentralPubMedCrossRefGoogle Scholar
  44. Cooper PS, Lipshultz D, Matten WT, McGinnis SD, Pechous S, Romiti ML, Tao T, Valjavec-Gratian M, Sayers EW (2010) Education resources of the National Center for Biotechnology Information. Brief Bioinform 11:563–569Google Scholar
  45. Pizza M, Scarlato V, Masignani V, Giuliani MM, Aricò B, Comanducci M, Jennings GT, Baldi L et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820PubMedCrossRefGoogle Scholar
  46. Ramachandran S, Chaudhuri R, Verma SP, Shah AR, Paul C, Chakraborty S, Puniya BL and Mandal RS (2011) Biological Data Modelling and Scripting in R, Systems and Computational Biology - Bioinformatics and Computational Modeling, Prof Ning-Sun Yang (Ed), InTech.
  47. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  48. Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450PubMedCrossRefGoogle Scholar
  49. Rehm A, Stern P, Ploegh HL, Tortorella D (2001) Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor. EMBO J 20:1573–1582PubMedCrossRefGoogle Scholar
  50. Ross BC, Czajkowski L, Hocking D, Margetts M, Webb E, Rothel L, Patterson M, Agius C, Camuglia S, Reynolds E, Littlejohn T, Gaeta B, Ng A, Kuczek ES, Mattick JS, Gearing D, Barr IG (2001) Identification of vaccine candidate antigens from a genomic analysis of Porphyromonas gingivalis. Vaccine 19:4135–4142PubMedCrossRefGoogle Scholar
  51. Sachdeva G, Kumar K, Jain P, Ramachandran S (2005) SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21:483–491PubMedCrossRefGoogle Scholar
  52. Saha S, Raghava GP (2006) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res W202–W209Google Scholar
  53. Saha S, Raghava GP (2006b) Prediction of continuous b-cell epitopes in an antigen using Recurrent Neural Network. Proteins 65:40–48PubMedCrossRefGoogle Scholar
  54. Saha S, Raghava GP (2007) Prediction methods for B-cell epitopes. Methods Mol Biol 409:387–394PubMedCrossRefGoogle Scholar
  55. Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 4:530–541CrossRefGoogle Scholar
  56. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17:1236–1237PubMedCrossRefGoogle Scholar
  57. Stone AC, Wilbur AK, Buikstra JE, Roberts CA (2009) Tuberculosis and leprosy in perspective. Am J Phys Anthropol 49:66–94CrossRefGoogle Scholar
  58. Sweredoski MJ, Baldi P (2008) PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24:1459–1460PubMedCrossRefGoogle Scholar
  59. Thorpe C, Edwards L, Snelgrove R, Finco O, Rae A, Grandi G, Guilio R, Hussell T (2007) Discovery of a vaccine antigen that protects mice from Chlamydia pneumoniae infection. Vaccine 25:2252–2260PubMedCrossRefGoogle Scholar
  60. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B (2010) The immune epitope database 20. Nucleic Acids Res 38(Database issue): D854–D862Google Scholar
  61. Vivona S, Bernante F, Filippini F (2006) NERVE: new enhanced reverse vaccinology environment. BMC Biotechnol 6:35PubMedCentralPubMedCrossRefGoogle Scholar
  62. Vivona S, Gardy JL, Ramachandran S, Brinkman FS, Raghava GP, Flower DR, Filippini F (2008) Computer-aided biotechnology: from immuno-informatics to reverse vaccinology. Trends Biotechnol 26:190–200PubMedCrossRefGoogle Scholar
  63. Waller EA, Roy A, Brumble L, Khoor A, Johnson MM, Garland JL (2006) The expanding spectrum of Mycobacterium avium complex-associated pulmonary disease. Chest 130:1234–1241PubMedCrossRefGoogle Scholar
  64. Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform 11:568CrossRefGoogle Scholar
  65. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 30: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615PubMedCrossRefGoogle Scholar
  66. Zhang Q, Wang P, Kim Y, Haste-Andersen P, Beaver J, Bourne PE, Bui HH, Buus S, Frankild S, Greenbaum J, Lund O, Lundegaard C, Nielsen M, Ponomarenko J, Sette A, Zhu Z, Peters B (2008) Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 36(Web Server):W513–W518PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rupanjali Chaudhuri
    • 1
  • Deepika Kulshreshtha
    • 1
  • Muthukurussi Varieth Raghunandanan
    • 1
  • Srinivasan Ramachandran
    • 1
  1. 1.CSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations