Skip to main content

Advertisement

Log in

An Immunoinformatics-Based Study of Mycobacterium tuberculosis Region of Difference-2 Uncharacterized Protein (Rv1987) as a Potential Subunit Vaccine Candidate for Preliminary Ex Vivo Analysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 08 August 2023

This article has been updated

Abstract

Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis and develops resistance to many of the existing drugs. The sole licensed TB vaccine, BCG, is unable to provide a comprehensive defense. So, it is crucial to maintain the immunological response to eliminate tuberculosis. Our previous in silico study reported five uncharacterized proteins as potential vaccine antigens. In this article, we considered the uncharacterized Mtb H37Rv regions of difference (RD-2) Rv1987 protein as a promising vaccine candidate. The vaccine quality of the protein was analyzed using reverse vaccinology and immunoinformatics-based quality-checking parameters followed by an ex vivo preliminary investigation. In silico analysis of Rv1987 protein predicted it as surface localized, secretory, single helix, antigenic, non-allergenic, and non-homologous to the host protein. Immunoinformatics analysis of Rv1987 by CD4 + and CD8 + T-cells via MHC-I and MHC-II binding affinity and presence of B-cell epitope predicted its immunogenicity. The docked complex analysis of the 3D model structure of the protein with immune cell receptor TLR-4 revealed the protein’s capability for potential interaction. Furthermore, the target protein-encoded gene Rv1987 was cloned, over-expressed, purified, and analyzed by mass spectrometry (MS) to report the target peptides. The qRT-PCR gene expression analysis shows that it is capable of activating macrophages and significantly increasing the production of a number of key cytokines (TNF-α, IL-1β, and IL-10). Our in-silico analysis and ex vivo preliminary investigations revealed the immunogenic potential of the target protein. These findings suggest that the Rv1987 be undertaken as a potent subunit vaccine antigen and that further animal model immuno-modulation studies would boost the novel TB vaccine discovery and/or BCG vaccine supplement pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Change history

Abbreviations

RD:

Region of difference

MDR:

Multidrug-resistant

XDR:

Extreme drug-resistant

MTBC:

Mycobacterium tuberculosis Complex bacteria (MTBC)

MD:

Molecular dynamics

Mtb :

Mycobacterium tuberculosis

BCG:

Bacille Calmette-Guérin

WHO:

World Health Organization

RMSD:

Root mean square deviations

TLR:

Tool-like receptors

MHC:

Major histocompatibility complex

References

  1. Jin, C., Wu, X., Dong, C., Li, F., Fan, L., Xiong, S., & Dong, Y. (2019). EspR promotes mycobacteria survival in macrophages by inhibiting MyD88-mediated inflammation and apoptosis. Tuberculosis, 116, 22–31.

    Article  CAS  PubMed  Google Scholar 

  2. Medie, F. M., Vincentelli, R., Drancourt, M., & Henrissat, B. (2011). Mycobacterium tuberculosis Rv1090 and Rv1987 encode functional β-glucan-targeting proteins. Protein expression and purification, 75(2), 172–176.

    Article  Google Scholar 

  3. Ottenhoff, T. H. M., & Kaufmann, S. H. E. (2012). Vaccines against tuberculosis: Where are we and where do we need to go? PLoS Pathogens, 8(5), e1002607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. World Health Organization. (2020). WHO consolidated guidelines on tuberculosis: tuberculosis preventive treatment. World Health Organization.

  5. Arthur, P. K., Amarh, V., Cramer, P., Arkaifie, G. B., Blessie, E. J. S., Fuseini, M.-S., … Robertson, B. D. (2019). Characterization of two new multidrug-resistant strains of Mycobacterium smegmatis: tools for routine in vitro screening of novel anti-mycobacterial agents. Antibiotics, 8(1), 4.

  6. Vogelmeier, C. F., Criner, G. J., Martinez, F. J., Anzueto, A., Barnes, P. J., Bourbeau, J., … Fabbri, L. M. (2017). Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. American Journal of Respiratory and Critical Care Medicine, 195(5), 557–582.

  7. Prabowo, S. A., Zelmer, A., Stockdale, L., Ojha, U., Smith, S. G., Seifert, K., & Fletcher, H. A. (2019). Historical BCG vaccination combined with drug treatment enhances inhibition of mycobacterial growth ex vivo in human peripheral blood cells. Scientific Reports, 9(1), 1–12.

    Article  CAS  Google Scholar 

  8. Alyahya, S. A., Nolan, S. T., Smith, C. M. R., Bishai, W. R., Sadoff, J., & Lamichhane, G. (2015). Immunogenicity without efficacy of an adenoviral tuberculosis vaccine in a stringent mouse model for immunotherapy during treatment. PLoS One, 10(5), e0127907.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Garhyan, J., Mohan, S., Rajendran, V., & Bhatnagar, R. (2020). Preclinical evidence of nanomedicine formulation to target mycobacterium tuberculosis at its bone marrow niche. Pathogens, 9(5), 372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Silva, D. R., Migliori, G. B., & Mello, F. C. de Q. (2019). Tuberculosis series 2019. Journal Brasileiro de Pneumologia, 45(2), e20190064. https://doi.org/10.1590/1806-3713/e20190064

  11. Arora, S. K., Alam, A., Naqvi, N., Ahmad, J., Sheikh, J. A., Rahman, S. A., … Ehtesham, N. Z. (2020). Immunodominant Mycobacterium tuberculosis protein Rv1507A elicits Th1 response and modulates host macrophage effector functions. Frontiers in Immunology, 1199.

  12. Sharma, D., Bisht, D., & Khan, A. U. (2018). Potential alternative strategy against drug-resistant tuberculosis: A proteomics prospect. Proteomes, 6(2), 26.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Priyadarshini, V., Pradhan, D., Munikumar, M., Swargam, S., Umamaheswari, A., & Rajasekhar, D. (2014). Genome-based approaches to develop epitope-driven subunit vaccines against pathogens of infective endocarditis. Journal of Biomolecular Structure and Dynamics, 32(6), 876–889.

    Article  CAS  PubMed  Google Scholar 

  14. Delany, I., Rappuoli, R., & Seib, K. L. (2013). Vaccines, reverse vaccinology, and bacterial pathogenesis. Cold Spring Harbor Perspectives in Medicine, 3(5), a012476.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stylianou, E., Harrington-Kandt, R., Beglov, J., Bull, N., Pinpathomrat, N., Swarbrick, G. M., … McShane, H. (2018). Identification and evaluation of novel protective antigens for the development of a candidate tuberculosis subunit vaccine. Infection and Immunity, 86(7), e00014–18.

  16. Kalra, M., Grover, A., Mehta, N., Singh, J., Kaur, J., Sable, S. B., … Khuller, G. K. (2007). Supplementation with RD antigens enhances the protective efficacy of BCG in tuberculous mice. Clinical Immunology, 125(2), 173–183.

  17. Forrellad, M. A., Klepp, L. I., Gioffré, A., Sabio y Garcia, J., Morbidoni, H. R., Santangelo, M. de la P., … Bigi, F. (2013). Virulence factors of the Mycobacterium tuberculosis complex. Virulence, 4(1), 3–66.

  18. Nieuwenhuizen, N. E., & Kaufmann, S. H. E. (2018). Next-generation vaccines based on Bacille Calmette-Guérin. Frontiers in Immunology, 9, 121.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li, J., Zhao, A., Tang, J., Wang, G., Shi, Y., Zhan, L., & Qin, C. (2020). Tuberculosis vaccine development: From classic to clinical candidates. European Journal of Clinical Microbiology & Infectious Diseases, 39(8), 1405–1425.

    Article  Google Scholar 

  20. Zhu, B., Dockrell, H. M., Ottenhoff, T. H. M., Evans, T. G., & Zhang, Y. (2018). Tuberculosis vaccines: Opportunities and challenges. Respirology, 23(4), 359–368.

    Article  PubMed  Google Scholar 

  21. Mostowy, S., Tsolaki, A. G., Small, P. M., & Behr, M. A. (2003). The in vitro evolution of BCG vaccines. Vaccine, 21(27–30), 4270–4274.

    Article  CAS  PubMed  Google Scholar 

  22. Sha, S., Shi, X., Deng, G., Chen, L., Xin, Y., & Ma, Y. (2017). Mycobacterium tuberculosis Rv1987 induces Th2 immune responses and enhances Mycobacterium smegmatis survival in mice. Microbiological Research, 197, 74–80.

    Article  CAS  PubMed  Google Scholar 

  23. Arega, A. M., Pattanaik, K. P., Nayak, S., & Mahapatra, R. K. (2021). Computational discovery and ex-vivo validation study of novel antigenic vaccine candidates against tuberculosis. Acta Tropica, 217, 105870.

    Article  CAS  PubMed  Google Scholar 

  24. UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.

    Article  Google Scholar 

  25. Larsen, J. E. P., Lund, O., & Nielsen, M. (2006). Improved method for predicting linear B-cell epitopes. Immunome Research, 2(1), 1–7.

    Article  Google Scholar 

  26. Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics, 65(1), 40–48.

    Article  CAS  Google Scholar 

  27. Saha, S., & Raghava, G. P. S. (2007). Prediction methods for B-cell epitopes. Immunoinformatics: Predicting Immunogenicity in Silico, 387–394.

  28. Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., … Peters, B. (2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343.

  29. Crooke, S. N., Ovsyannikova, I. G., Kennedy, R. B., & Poland, G. A. (2020). Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Scientific Reports, 10(1), 1–15.

    Article  Google Scholar 

  30. Saha, S., & Raghava, G. P. S. (2006). AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(suppl_2), W202–W209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andreatta, M., & Nielsen, M. (2016). Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics, 32(4), 511–517.

    Article  CAS  PubMed  Google Scholar 

  32. Nielsen, M., Lundegaard, C., & Lund, O. (2007). Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics, 8(1), 1–12.

    Article  Google Scholar 

  33. Ong, E., Cooke, M. F., Huffman, A., Xiang, Z., Wong, M. U., Wang, H., … He, Y. (2021). Vaxign2: The second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Research, 49(W1), W671–W678.

  34. Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., … Nielsen, M. (2018). Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 154(3), 394–406.

  35. Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–W181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Colovos, C., & Yeates, T. O. (1993). ERRAT: An empirical atom-based method for validating protein structures. Protein Science, 2(9), 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laskowski, R. A., MacArthur, M. W., & Thornton, J. M. (2006). PROCHECK: validation of protein-structure coordinates.

  39. Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: assessment of protein models with three-dimensional profiles. In Methods in enzymology, 277, 396–404. Elsevier: Academic Press.

  40. Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V, … Duarte, J. M. (2021). RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(D1), D437–D451.

  41. Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., … Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255.

  42. Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection, 8(2), 127–134.

    Article  CAS  Google Scholar 

  43. Pandey, R. K., Verma, P., Sharma, D., Bhatt, T. K., Sundar, S., & Prajapati, V. K. (2016). High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Biomedicine & Pharmacotherapy, 83, 141–152.

    Article  CAS  Google Scholar 

  44. Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56.

    Article  CAS  Google Scholar 

  45. Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712–725.

    Article  CAS  Google Scholar 

  46. Schrodinger, L. L. C. (2016). The PyMOL Molecular Graphics System, Version 1.3 r1. PyMol.

  47. Vaught, A. (1996). Graphing with Gnuplot and Xmgr: two graphing packages available under Linux. Linux Journal, 1996(28es), 7.

    Google Scholar 

  48. Kumru, O. S., Joshi, S. B., Smith, D. E., Middaugh, C. R., Prusik, T., & Volkin, D. B. (2014). Vaccine instability in the cold chain: Mechanisms, analysis and formulation strategies. Biologicals, 42(5), 237–259.

    Article  CAS  PubMed  Google Scholar 

  49. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 571–607.

  50. Mshana, R. N., Tadesse, G., Abate, G., & Miörner, H. (1998). Use of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. Journal of Clinical Microbiology, 36(5), 1214–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of cell viability by the MTT assay. Cold Spring Harbor Protocols, 2018(6), pdb-prot095505.

    Article  Google Scholar 

  52. Barnabe, M. (2017). Cell viability assays: MTT assay application and protocol.

  53. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.

    Article  CAS  PubMed  Google Scholar 

  54. Sharon, J., Rynkiewicz, M. J., Lu, Z., & Yang, C. (2014). Discovery of protective B-cell epitopes for development of antimicrobial vaccines and antibody therapeutics. Immunology, 142(1), 1–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, J., Cao, R., & Cheng, J. (2015). A large-scale conformation sampling and evaluation server for protein tertiary structure prediction and its assessment in CASP11. BMC Bioinformatics, 16(1), 1–11.

    Article  Google Scholar 

  56. Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291.

    Article  CAS  Google Scholar 

  58. Ramachandran, G. N. T., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–437.

    Article  CAS  PubMed  Google Scholar 

  59. Rana, A., Thakur, S., Kumar, G., & Akhter, Y. (2018). Recent trends in system-scale integrative approaches for discovering protective antigens against mycobacterial pathogens. Frontiers in Genetics, 9, 572.

  60. Rana, A., & Akhter, Y. (2016). A multi-subunit based, thermodynamically stable model vaccine using combined immunoinformatics and protein structure-based approach. Immunobiology, 221(4), 544–557.

    Article  CAS  PubMed  Google Scholar 

  61. Koff, W. C., Burton, D. R., Johnson, P. R., Walker, B. D., King, C. R., Nabel, G. J., … Plotkin, S. A. (2013). Accelerating next-generation vaccine development for global disease prevention. Science, 340(6136), 1232910.

  62. He, Y., Rappuoli, R., De Groot, A. S., & Chen, R. T. (2010). Vaccine informatics. Journal of Biomedicine and Biotechnology, 2010, 218590. https://doi.org/10.1155/218590

  63. Cho, T., Khatchadourian, C., Nguyen, H., Dara, Y., Jung, S., & Venketaraman, V. (2021). A review of the BCG vaccine and other approaches toward tuberculosis eradication. Human Vaccines & Immunotherapeutics, 17(8), 2454–2470.

    Article  CAS  Google Scholar 

  64. Finco, O., & Rappuoli, R. (2014). Designing vaccines for the twenty-first century society. Frontiers in Immunology, 5, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  65. María, R. R., Arturo, C. J., Alicia, J., Paulina, M. G., & Gerardo, A. (2017). The impact of bioinformatics on vaccine design and development. Vaccines, 2, 3–6.

    Google Scholar 

  66. Munikumar, M., Priyadarshini, I. V., Pradhan, D., Umamaheswari, A., & Vengamma, B. (2013). Computational approaches to identify common subunit vaccine candidates against bacterial meningitis. Interdisciplinary Sciences: Computational Life Sciences, 5, 155–164.

    CAS  PubMed  Google Scholar 

  67. Munikumar, M., Priyadarshini, V., Pradhan, D., Swargam, S., & Umamaheswari, A. (2013). 177 T-cell vaccine design for Streptococcus pneumoniae: An in silico approach. Journal of Biomolecular Structure and Dynamics, 31(sup1), 114–115.

    Article  Google Scholar 

  68. Medie, F. M., Salah, I. B., Drancourt, M., & Henrissat, B. (2010). Paradoxical conservation of a set of three cellulose-targeting genes in Mycobacterium tuberculosis complex organisms. Microbiology, 156(5), 1468–1475.

    Article  Google Scholar 

  69. Cui, T., Zhang, L., Wang, X., & He, Z.-G. (2009). Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics, 10(1), 1–10.

    Article  Google Scholar 

  70. Takeda, K., & Akira, S. (2004). TLR signaling pathways. In Seminars in immunology, 16, 3–9. Academic Press.

  71. Kim, W. S., Jung, I. D., Kim, J.-S., Kim, H. M., Kwon, K. W., Park, Y.-M., & Shin, S. J. (2018). Mycobacterium tuberculosis GrpE, a heat-shock stress-responsive chaperone, promotes Th1-biased T cell immune response via TLR4-mediated activation of dendritic cells. Frontiers in Cellular and Infection Microbiology, 8, 95.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sánchez, D., Rojas, M., Hernández, I., Radzioch, D., García, L. F., & Barrera, L. F. (2010). Role of TLR2-and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death. Cellular Immunology, 260(2), 128–136.

    Article  PubMed  Google Scholar 

  73. Mukherjee, S., Karmakar, S., & Babu, S. P. S. (2016). TLR2 and TLR4 mediated host immune responses in major infectious diseases: A review. Brazilian Journal of Infectious Diseases, 20, 193–204.

    Article  Google Scholar 

  74. Johnston, C., Douarre, P. E., Soulimane, T., Pletzer, D., Weingart, H., MacSharry, J., … O’Mahony, J. (2013). Codon optimisation to improve expression of a Mycobacterium avium ssp. paratuberculosis-specific membrane-associated antigen by Lactobacillus salivarius. Pathogens and Disease, 68(1), 27–38.

  75. Sable, S. B., Plikaytis, B. B., & Shinnick, T. M. (2007). Tuberculosis subunit vaccine development: Impact of physicochemical properties of mycobacterial test antigens. Vaccine, 25(9), 1553–1566.

    Article  CAS  PubMed  Google Scholar 

  76. Medie, F. M., Vincentelli, R., Drancourt, M., & Henrissat, B. (2011). Mycobacterium tuberculosis Rv1090 and Rv1987 encode functional β-glucan-targeting proteins. Protein Expression and Purification, 75, 172–176.

    Article  Google Scholar 

  77. Li, Y., Zeng, J., Shi, J., Wang, M., Rao, M., Xue, C., … He, Z.-G. (2010). A proteome-scale identification of novel antigenic proteins in Mycobacterium tuberculosis toward diagnostic and vaccine development. Journal of Proteome Research, 9(9), 4812–4822.

  78. Romero-Adrian, T. B., Leal-Montiel, J., Fernández, G., & Valecillo, A. (2015). Role of cytokines and other factors involved in the Mycobacterium tuberculosis infection. World Journal of Immunology, 5(1), 16–50.

    Article  Google Scholar 

  79. Rajaram, M. V. S., Brooks, M. N., Morris, J. D., Torrelles, J. B., Azad, A. K., & Schlesinger, L. S. (2010). Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor γ linking mannose receptor recognition to regulation of immune responses. The Journal of Immunology, 185(2), 929–942.

    Article  CAS  PubMed  Google Scholar 

  80. Xie, Y., Zhou, Y., Liu, S., & Zhang, X. (2021). PE_PGRS: Vital proteins in promoting mycobacterial survival and modulating host immunity and metabolism. Cellular Microbiology, 23(3), e13290.

    Article  CAS  PubMed  Google Scholar 

  81. Dhanda, S. K., Usmani, S. S., Agrawal, P., Nagpal, G., Gautam, A., & Raghava, G. P. S. (2017). Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Briefings in Bioinformatics, 18(3), 467–478.

    CAS  PubMed  Google Scholar 

  82. Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: Progress and challenges. Vaccines, 2(3), 515–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Logesh, R., Lavanya, V., Jamal, S., & Ahmed, N. (2022). Designing of a chimeric vaccine using EIS (Rv2416c) protein against Mycobacterium tuberculosis H37Rv: An immunoinformatics approach. Applied Biochemistry and Biotechnology, 194(1), 187–214.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Bioinformatics, Immunology, and Plant Molecular Biology laboratory facilities of School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, for completion of the research work. In addition, the authors would like to acknowledge KIIT Deemed to be University, Odisha, India, and Ethiopia Federal Democratic Republic Ministry of Education Addis Ababa and National Veterinary Institute, Debre Zeit, Ethiopia, for providing the financial support to conduct the PhD research work.

Author information

Authors and Affiliations

Authors

Contributions

AMA contributed to performing and analyzing the in silico and wet lab experiments as well as writing the manuscript. AKD performed the MD simulation and data analysis of the results. KPP contributes towards the MTT assay and cytokine analysis of the identified vaccine candidate. SN provided the chemicals and Petri plates and co-supervised the study. RKM conceived the project, supervised the whole study, and corrected the manuscript.

Corresponding author

Correspondence to Rajani Kanta Mahapatra.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47.2 KB)

Supplementary file2 (DOCX 2.30 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arega, A.M., Dhal, A.K., Pattanaik, K.P. et al. An Immunoinformatics-Based Study of Mycobacterium tuberculosis Region of Difference-2 Uncharacterized Protein (Rv1987) as a Potential Subunit Vaccine Candidate for Preliminary Ex Vivo Analysis. Appl Biochem Biotechnol 196, 2367–2395 (2024). https://doi.org/10.1007/s12010-023-04658-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04658-9

Keywords

Navigation