Skip to main content
Log in

Mathematical modeling of fission yeast Schizosaccharomyces pombe cell cycle: exploring the role of multiple phosphatases

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Cell cycle is the central process that regulates growth and division in all eukaryotes. Based on the environmental condition sensed, the cell lies in a resting phase G0 or proceeds through the cyclic cell division process (G1→S→G2→M). These series of events and phase transitions are governed mainly by the highly conserved Cyclin dependent kinases (Cdks) and its positive and negative regulators. The cell cycle regulation of fission yeast Schizosaccharomyces pombe is modeled in this study. The study exploits a detailed molecular interaction map compiled based on the published model and experimental data. There are accumulating evidences about the prominent regulatory role of specific phosphatases in cell cycle regulations. The current study emphasizes the possible role of multiple phosphatases that governs the cell cycle regulation in fission yeast S. pombe. The ability of the model to reproduce the reported regulatory profile for the wild-type and various mutants was verified though simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

WT:

Wild type

Cdc:

Cell division cycle

Cdk:

Cyclin dependent kinase

MPF:

M phase promoting factor

preMPF:

Inactive MPF

References

  • Aguda BD (1999) A quantitative analysis of the kinetics of the G(2) DNA damage checkpoint system. Proc Natl Acad Sci USA 96(20):11352–11357

    Article  PubMed  CAS  Google Scholar 

  • Aguda BD, Tang Y (1999) The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif 32(5):321–335

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, fifth edition. Garland Science Publishers, London

    Google Scholar 

  • Aligue R, Wu L, Russell P (1997) Regulation of Schizosaccharomyces pombe Wee1 tyrosine kinase. J Biol Chem 272(20):13320–13325

    Article  PubMed  CAS  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461. doi:10.1038/Nrg2102

    Article  PubMed  CAS  Google Scholar 

  • Bahler J (2005) Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet 39:69–94. doi:10.1146/annurev.genet.39.110304.095808

    Article  PubMed  CAS  Google Scholar 

  • Ball DA, Ahn TH, Wang PY, Chen KC, Cao Y, Tyson JJ, Peccoud J, Baumann WT (2011) Stochastic exit from mitosis in budding yeast model predictions and experimental observations. Cell Cycle 10(6):999–1009. doi:10.4161/cc.10.6.14966

    Article  PubMed  CAS  Google Scholar 

  • Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ (2010) A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol 6. doi:10.1038/Msb.2010.55

  • Benito J, Martin C, Arellano M, Blanco M, Sanchez A, Bolanos P, Moreno S (1997) Regulation of progression through start in fission yeast. Eur J Cell Biol 72:2

    Google Scholar 

  • Benito J, Martin-Castellanos C, Moreno S (1998) Regulation of the G(1) phase of the cell cycle by periodic stabilization and degradation of the p25(rum1) CDK inhibitor. EMBO J 17(2):482–497

    Article  PubMed  CAS  Google Scholar 

  • Blanco MA, Sanchez-Diaz A, de Prada JM, Moreno S (2000) APC(ste9/srw1) promotes degradation of mitotic cyclins in G(1) and is inhibited by cdc2 phosphorylation. EMBO J 19(15):3945–3955

    Article  PubMed  CAS  Google Scholar 

  • Chauhan A, Legewie S, Westermark PO, Lorenzen S, Herzel H (2008) Mesoscale model of G1/S phase transition in liver regeneration. J Theor Biol 252(3):465–473. doi:10.1016/j.jtbi.2008.01.020

    Article  PubMed  CAS  Google Scholar 

  • Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11(1):369–391

    PubMed  CAS  Google Scholar 

  • Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15(8):3841–3862. doi:10.1091/mbc.E03-11-0794

    Article  PubMed  CAS  Google Scholar 

  • Chen CT, Feoktistova A, Chen JS, Shim YS, Clifford DM, Gould KL, McCollum D (2008) The SIN kinase Sid2 regulates cytoplasmic retention of the S. pombe Cdc14-like phosphatase Clp1. Curr Biol 18(20):1594–1599. doi:10.1016/j.cub.2008.08.067

    Google Scholar 

  • Ciliberto A, Tyson JJ (2000) Mathematical model for early development of the sea urchin embryo. Bull Math Biol 62(1):37–59

    Article  PubMed  CAS  Google Scholar 

  • Ciliberto A, Novak B, Tyson JJ (2003) Mathematical model of the morphogenesis checkpoint in budding yeast. J Cell Biol 163(6):1243–1254. doi:10.1083/jcb.200306139

    Article  PubMed  CAS  Google Scholar 

  • Ciliberto A, Lukacs A, Toth A, Tyson JJ, Novak B (2005) Rewiring the exit from mitosis. Cell Cycle 4(8):1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Clifford DM, Chen CT, Roberts RH, Feoktistova A, Wolfe BA, Chen JS, McCollum D, Gould KL (2008a) The role of Cdc14 phosphatases in the control of cell division. Biochem Soc Trans 36:436–438. doi:10.1042/Bst0360436

    Article  PubMed  CAS  Google Scholar 

  • Clifford DM, Wolfe BA, Roberts-Galbraith RH, McDonald WH, Yates JR, Gould KL (2008b) The Clp1/Cdc14 phosphatase contributes to the robustness of cytokinesis by association with anillin-related Mid1. J Cell Biol 181(1):79–88. doi:10.1083/jcb.200709060

    Article  PubMed  CAS  Google Scholar 

  • CorreaBordes J, Gulli MP, Nurse P (1997) p25(rum1) promotes proteolysis of the mitotic B-cyclin p56(cdc13) during G(1) of the fission yeast cell cycle. EMBO J 16(15):4657–4664

    Article  CAS  Google Scholar 

  • Coudreuse D, Nurse P (2010) Driving the cell cycle with a minimal CDK control network. Nature 468(7327):1074–1474. doi:10.1038/Nature09543

    Article  PubMed  CAS  Google Scholar 

  • Csikasz-Nagy A (2009) Computational systems biology of the cell cycle. Brief Bioinf 10(4):424–434. doi:10.1093/Bib/Bbp005

    Article  CAS  Google Scholar 

  • Csikasz-Nagy A, Battogtokh D, Chen KC, Novak B, Tyson JJ (2006) Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 90(12):4361–4379. doi:10.1529/biophysj.106.081240

    Article  PubMed  CAS  Google Scholar 

  • Csikasz-Nagy A, Kapuy O, Gyorffy B, Tyson JJ, Novak B (2007) Modeling the septation initiation network (SIN) in fission yeast cells. Curr Genet 51(4):245–255. doi:10.1007/s00294-007-0123-4

    Article  PubMed  CAS  Google Scholar 

  • Csikasz-Nagy A, Gyorffy B, Alt WG, Tyson JJ, Novak B (2008a) Spatial controls for growth zone formation during the fission yeast cell cycle. Yeast 25(1):59–69. doi:10.1002/Yea.1571

    Article  PubMed  CAS  Google Scholar 

  • Csikasz-Nagy A, Novak B, Tyson JJ (2008b) Reverse engineering models of cell cycle regulation. Cell Oscil Mech 641:88–97

    Article  CAS  Google Scholar 

  • Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. Plos One 3(2). doi:10.1371/Journal.Pone.0001672

  • De Wulf P, Montani F, Visintin R (2009) Protein phosphatases take the mitotic stage. Curr Opin Cell Biol 21(6):806–815. doi:10.1016/j.ceb.2009.08.003

    Article  PubMed  CAS  Google Scholar 

  • Esteban V, Blanco M, Cueille N, Simanis V, Moreno S, Bueno A (2004) A role for the Cdc14-family phosphatase Flp1p at the end of the cell cycle in controlling the rapid degradation of the mitotic inducer Cdc25p in fission yeast. J Cell Sci 117(12):2461–2468. doi:10.1242/Jcs.01107

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser C, Simanis V (1993) The Schizosaccharomyces pombe Cdc14 gene is required for septum formation and can also inhibit nuclear division. Mol Biol Cell 4(5):531–539

    PubMed  CAS  Google Scholar 

  • Fantes PA, Nurse P (1978) Control of timing of cell-division in fission yeast—cell-size mutants reveal a 2nd control pathway. Exp Cell Res 115(2):317–329

    Article  PubMed  CAS  Google Scholar 

  • Faure A, Naldi A, Lopez F, Chaouiya C, Ciliberto A, Thieffry D (2009) Modular logical modelling of the budding yeast cell cycle. Mol Biosyst 5(12):1787–1796. doi:10.1039/B910101m

    Article  PubMed  CAS  Google Scholar 

  • Ferrell JE (1996) Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21(12):460–466

    Article  PubMed  CAS  Google Scholar 

  • Funabiki H, Kumada K, Yanagida M (1996a) Fission yeast cut1 and cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J 15(23):6617–6628

    PubMed  CAS  Google Scholar 

  • Funabiki H, Yamano H, Kumada K, Nagao K, Hunt T, Yanagida M (1996b) Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381(6581):438–441

    Article  PubMed  CAS  Google Scholar 

  • Funabiki H, Yamano H, Nagao K, Tanaka H, Yasuda H, Hunt T, Yanagida M (1997) Fission yeast Cut2 required for anaphase has two destruction boxes. EMBO J 16(19):5977–5987

    Article  PubMed  CAS  Google Scholar 

  • Fuss H, Dubitzky W, Downes CS, Kurth MJ (2005) Mathematical models of cell cycle regulation. Brief Bioinf 6(2):163–177

    Article  CAS  Google Scholar 

  • Gardner TS, Dolnik M, Collins JJ (1998) A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. Proc Natl Acad Sci USA 95(24):14190–14195

    Article  PubMed  CAS  Google Scholar 

  • Goldbeter A (1991) A minimal cascade model for the mitotic oscillator involving cyclin and Cdc2 kinase. Proc Natl Acad Sci USA 88(20):9107–9111

    Article  PubMed  CAS  Google Scholar 

  • Gould KL, Moreno S, Owen DJ, Sazer S, Nurse P (1991) Phosphorylation at Thr167 is required for Schizosaccharomyces pombe P34cdc2 function. EMBO J 10(11):3297–3309

    PubMed  CAS  Google Scholar 

  • Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex: it’s not just for mitosis any more. Genes Dev 16(17):2179–2206. doi:10.1101/Gad.1013102

    Article  PubMed  CAS  Google Scholar 

  • Hatzimanikatis V, Lee KH, Bailey JE (1999) A mathematical description of regulation of the G1-S transition of the mammalian cell cycle. Biotechnol Bioeng 65(6):631–637

    Article  PubMed  CAS  Google Scholar 

  • Hayles J, Nurse P (1989) A review of mitosis in the fission yeast Schizosaccharomyces pombe. Exp Cell Res 184(2):273–286

    Article  PubMed  CAS  Google Scholar 

  • Ingolia NT, Murray AW (2004) The ups and downs of modeling the cell cycle. Curr Biol 14(18):R771–R777. doi:10.1016/j.cub.2004.09.018

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto K, Hamada H, Eguchi Y, Okamoto M (2011) Mathematical modeling of cell cycle regulation in response to DNA damage: exploring mechanisms of cell-fate determination. Biosystems 103(3):384–391. doi:10.1016/j.biosystems.2010.11.011

    Article  PubMed  CAS  Google Scholar 

  • Kellogg DR (2003) Wee1-dependent mechanisms required for coordination of cell growth and cell division. J Cell Sci 116(24):4883–4890

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita N, Ohkura H, Yanagida M (1990) Distinct, essential roles of type-1 and type-2a protein phosphatases in the control of the fission yeast-cell division cycle. Cell 63(2):405–415

    Google Scholar 

  • Kinoshita N, Yamano H, Niwa H, Yoshida T, Yanagida M (1993) Negative regulation of mitosis by the fission yeast protein phosphatase ppa2. Genes Dev 7(6):1059–1071

    Google Scholar 

  • Kitamura K, Maekawa H, Shimoda C (1998) Fission yeast Ste9, a homolog of Hct1/Cdh1 and fizzy-related, is a novel negative regulator of cell cycle progression during G(1)-phase. Mol Biol Cell 9(5):1065–1080

    PubMed  CAS  Google Scholar 

  • Kohn KW (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 10(8):2703–2734

    PubMed  CAS  Google Scholar 

  • Kominami K, Seth-Smith H, Toda T (1998) Apc10 and Ste9/Srw1, two regulators of the APC-cyclosome, as well as the CDK inhibitor Rum1 are required for G(1) cell-cycle arrest in fission yeast. EMBO J 17(18):5388–5399

    Article  PubMed  CAS  Google Scholar 

  • Kumada K, Nakamura T, Nagao K, Funabiki H, Nakagawa T, Yanagida M (1998) Cut1 is loaded onto the spindle by binding to Cut2 and promotes anaphase spindle movement upon Cut2 proteolysis. Curr Biol 8(11):633–641

    Article  PubMed  CAS  Google Scholar 

  • Labib K, Moreno S (1996) rum1: a CDK inhibitor regulating G1 progression in fission yeast. Trends Cell Biol 6(2):62–66

    Article  PubMed  CAS  Google Scholar 

  • Labib K, Moreno S, Nurse P (1995) Interaction of Cdc2 and Rum1 regulates start and S-phase in fission yeast. J Cell Sci 108:3285–3294

    PubMed  CAS  Google Scholar 

  • Labib K, Nurse P (1993) Cell-cycle—bring on the phosphatases. Curr Biol 3(3):164–166

    Article  PubMed  CAS  Google Scholar 

  • Lee MS, Enoch T, Piwnicaworms H (1994) Mik1(+) encodes a tyrosine kinase that phosphorylates P34(Cdc2) on Tyrosine-15. J Biol Chem 269(48):30530–30537

    PubMed  CAS  Google Scholar 

  • Li SH, Brazhnik P, Sobral B, Tyson JJ (2009) Temporal controls of the asymmetric cell division cycle in caulobacter crescentus. Plos Comput Biol 5(8). doi:10.1371/journal.pcbi.1000463

  • Li B, Shao B, Yu CL, Ouyang Q, Wang HL (2010) A mathematical model for cell size control in fission yeast. J Theor Biol 264(3):771–781. doi:10.1016/j.jtbi.2010.03.023

    Article  PubMed  CAS  Google Scholar 

  • Lovrics A, Csikasz-Nagy A, Zsely IG, Zador J, Turanyi T, Novak B (2006) Time scale and dimension analysis of a budding yeast cell cycle model. Bmc Bioinf 7. doi:10.1186/1471-2105-7-494

  • Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D (1991) Mik1 and Wee1 cooperate in the inhibitory tyrosine phosphorylation of Cdc2. Cell 64(6):1111–1122

    Article  PubMed  CAS  Google Scholar 

  • MacNeil SA, Nuse P (1997) Cell cycle control in fission yeast, vol 3. the molecular and cellular biology of the yeast Saccharomyces: cell cycle and cell biology. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Marlovits G, Tyson CJ, Novak B, Tyson JJ (1998) Modeling M-phase control in Xenopus oocyte extracts: the surveillance mechanism for unreplicated DNA. Biophys Chem 72(1–2):169–184

    Article  PubMed  CAS  Google Scholar 

  • Mendenhall MD, Hodge AE (1998) Regulation of cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62(4):1191

    PubMed  CAS  Google Scholar 

  • Millar JBA, Lenaers G, Russell P (1992) Pyp3-Ptpase acts as a mitotic inducer in fission yeast. EMBO J 11(13):4933–4941

    PubMed  CAS  Google Scholar 

  • Morgan DO (1995) Principles of Cdk regulation. Nature 374(6518):131–134

    Article  PubMed  CAS  Google Scholar 

  • Moser BA, Russell P (2000) Cell cycle regulation in Schizosaccharomyces pombe. Curr Opin Microbiol 3(6):631–636

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic-cell cycle. Nature 339(6222):275–280

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (2001) A prize for proliferation. Cell 107(6):689–701

    Article  PubMed  CAS  Google Scholar 

  • Norel R, Agur Z (1991) A model for the adjustment of the mitotic clock by cyclin and Mpf levels. Science 251(4997):1076–1078

    Article  PubMed  CAS  Google Scholar 

  • Novak B, Mitchison JM (1986) Change in the rate of Co2 production in synchronous cultures of the fission yeast Schizosaccharomyces pombe—a periodic cell-cycle event that persists after the DNA-division cycle has been blocked. J Cell Sci 86:191–206

    PubMed  CAS  Google Scholar 

  • Novak B, Tyson JJ (1993) Modeling the cell-division cycle—M-phase trigger, oscillations, and size control. J Theor Biol 165(1):101–134

    Article  Google Scholar 

  • Novak B, Tyson JJ (1995) Quantitative-analysis of a molecular-model of mitotic control in fission yeast. J Theor Biol 173(3):283–305

    Article  CAS  Google Scholar 

  • Novak B, Tyson JJ (1997) Modeling the control of DNA replication in fission yeast. Proc Natl Acad Sci USA 94(17):9147–9152

    Article  PubMed  CAS  Google Scholar 

  • Novak B, Tyson JJ (2008) Design principles of biochemical oscillators. Natl Rev Mol Cell Biol 9(12):981–991. doi:10.1038/Nrm2530

    Article  CAS  Google Scholar 

  • Novak B, Csikasz-Nagy A, Gyorffy B, Chen K, Tyson JJ (1998) Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys Chem 72(1–2):185–200

    Article  PubMed  CAS  Google Scholar 

  • Novak B, Toth A, Csikasz-Nagy A, Gyorffy B, Tyson JJ, Nasmyth K (1999) Finishing the cell cycle. J Theor Biol 199(2):223–233

    Article  PubMed  CAS  Google Scholar 

  • Novak B, Pataki Z, Ciliberto A, Tyson JJ (2001) Mathematical model of the cell division cycle of fission yeast. Chaos 11(1):277–286

    Article  PubMed  CAS  Google Scholar 

  • Novak B, Kapuy O, Domingo-Sananes MR, Tyson JJ (2010) Regulated protein kinases and phosphatases in cell cycle decisions. Curr Opin Cell Biol 22(6):801–808. doi:10.1016/j.ceb.2010.07.001

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344(6266):503–508

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (1991) The Florey lecture, 1990—how is the cell-division cycle regulated. Philos Trans R Soc Lond B-Biol Sci 332(1264):271–276

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100(1):71–78

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (2002) Cyclin dependent kinases and cell cycle control (nobel lecture). Chembiochem 3(7):596

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (2003) Understanding cells. Nature 424(6951):883. doi:10.1038/424883a

    Article  PubMed  CAS  Google Scholar 

  • Nurse P, Thuriaux P (1980) Regulatory genes-controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96(3):627–637

    PubMed  CAS  Google Scholar 

  • Obeyesekere MN, Zimmerman SO, Tecarro ES, Auchmuty G (1999) A model of cell cycle behavior dominated by kinetics of a pathway stimulated by growth factors. Bull Math Biol 61(5):917–934

    Article  PubMed  CAS  Google Scholar 

  • Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen HY, Skiena S, Futcher B, Leatherwood J (2005) The cell cycle-regulated genes of Schizosaccharomyces pombe. Plos Biol 3(7):1239–1260. doi:10.1371/journal.pbio.0030225

    Article  CAS  Google Scholar 

  • Pallen CJ, Tan YH, Guy GR (1992) Protein phosphatases in cell signalling. Curr Opin Cell Biol 4:1000–1007

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Karuturi RKM, Miller LD, Lin K, Jia YH, Kondu P, Wang L, Wong LS, Liu ET, Balasubramanian MK, Liu JH (2005) Identification of cell cycle-regulated genes in fission yeast. Mol Biol Cell 16(3):1026–1042. doi:10.1091/mbc.E04-04-0299

    Article  PubMed  CAS  Google Scholar 

  • Qu ZL, MacLellan WR, Weiss JN (2003) Dynamics of the cell cycle: checkpoints, sizers, and timers. Biophys J 85(6):3600–3611

    Article  PubMed  CAS  Google Scholar 

  • Queralt E, Uhlmann F (2008) Separase cooperates with Zds1 and Zds2 to activate Cdc14 phosphatase in early anaphase. J Cell Biol 182(5):873–883. doi:10.1083/jcb.200801054

    Article  PubMed  CAS  Google Scholar 

  • Queralt E, Lehane C, Novak B, Uhlmann F (2006) Downregulation of PP2A(Cdc-95) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125(4):719–732. doi:10.1016/j.cell.2006.03.038

    Article  PubMed  CAS  Google Scholar 

  • Rupes I (2002) Checking cell size in yeast. Trends Genet 18(9):479–485

    Article  PubMed  CAS  Google Scholar 

  • Rustici G, Bahler J (2001) Study of global gene expression patterns during the fission yeast cell cycle using DNA microarrays. Yeast 18:S99

    Google Scholar 

  • Rustici G, Mata J, Kivinen K, Lio P, Penkett CJ, Burns G, Hayles J, Brazma A, Nurse P, Bahler J (2004) Periodic gene expression program of the fission yeast cell cycle. Nat Genet 36(8):809–817. doi:10.1038/Ng1377

    Article  PubMed  CAS  Google Scholar 

  • Shimanuki M, Kinoshita N, Ohkura H, Yoshida T, Toda T, Yanagida M (1993) Isolation and characterization of the fission yeast protein phosphatase gene ppe1+ involved in cell-shape control and mitosis. Mol Biol Cell 4(3):303–313

    Google Scholar 

  • Sible JC, Tyson JJ (2007) Mathematical modeling as a tool for investigating cell cycle control networks. Methods 41(2):238–247. doi:10.1016/j.ymeth.2006.08.003

    Article  PubMed  CAS  Google Scholar 

  • Srividhya J, Gopinathan MS (2006) A simple time delay model for eukaryotic cell cycle. J Theor Biol 241(3):617–627. doi:10.1016/j.jtbi.2005.12.020

    Article  PubMed  CAS  Google Scholar 

  • Stegmeier F, Amon A (2004) CLOSING MITOSIS: The functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38:203–232

    Article  PubMed  CAS  Google Scholar 

  • Stern B, Nurse P (1996) A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet 12(9):345–350

    Google Scholar 

  • Sveiczer A, Novak B, Mitchison JM (1999) Mitotic control in the absence of cdc25 mitotic inducer in fission yeast. J Cell Sci 112(7):1085–1092

    PubMed  CAS  Google Scholar 

  • Sveiczer A, Csikasz-Nagy A, Gyorffy B, Tyson JJ, Novak B (2000) Modeling the fission yeast cell cycle: quantized cycle times in wee1(−) cdc25 Delta mutant cells. Proc Natl Acad Sci USA 97(14):7865–7870

    Article  PubMed  CAS  Google Scholar 

  • Toth A, Queralt E, Uhlmann F, Novak B (2007) Mitotic exit in two dimensions. J Theor Biol 248(3):560–573. doi:10.1016/j.jtbi.2007.06.014

    Article  PubMed  Google Scholar 

  • Trautmann S, McCollum D (2002) Cell cycle: new functions for Cdc14 family phosphatases. Curr Biol 12(21):R733–R735

    Article  PubMed  CAS  Google Scholar 

  • Trautmann S, McCollum D (2005) Distinct nuclear and cytoplasmic functions of the S-pombe Cdc14-like phosphatase Clp1p/Flp1p and a role for nuclear shuttling in its regulation. Curr Biol 15(15):1384–1389. doi:10.1016/j.cub.2005.06.039

    Article  PubMed  CAS  Google Scholar 

  • Trautmann S, Wolfe BA, Jorgensen P, Tyers M, Gould KL, McCollum D (2001) Fission yeast Clp1p phosphatase regulates G2/M transition and coordination of cytokinesis with cell cycle progression. Curr Biol 11(12):931–940

    Article  PubMed  CAS  Google Scholar 

  • Trautmann S, Rajagopalan S, McCollum D (2004) The S. pombe Cdc14-like phosphatase Clp1p regulates chromosome biorientation and interacts with Aurora Kinase. Dev Cell 7(5):755–762

  • Trinkle-Mulcahy L, Lamond AI (2006) Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol 18(6):623–631. doi:10.1016/j.ceb.2006.09.001

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ (1991) Modeling the cell-division cycle—Cdc2 and cyclin interactions. Proc Natl Acad Sci USA 88(16):7328–7332

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Novak B (2001) Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J Theor Biol 210(2):249–263

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Novak B (2008) Temporal organization of the cell cycle. Curr Biol 18(17):R759–R768. doi:10.1016/j.cub.2008.07.001

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Novak B (2010) Functional motifs in biochemical reaction networks. Ann Rev Phys Chem 61(61):219–240. doi:10.1146/annurev.physchem.012809.103457

    Google Scholar 

  • Tyson JJ, Novak B (2011) Cell cycle: who turns the crank? Curr Biol 21(5):R185–R187. doi:10.1016/j.cub.2011.01.042

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Novak B, Odell GM, Chen K, Thron CD (1996) Chemical kinetic theory: understanding cell cycle regulation. Trends Biochem Sci 21(3):89–96

    PubMed  CAS  Google Scholar 

  • Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Natl Rev Mol Cell Biol 2(12):908–916

    Article  CAS  Google Scholar 

  • Tyson JJ, Csikasz-Nagy A, Novak B (2002) The dynamics of cell cycle regulation. Bioessays 24(12):1095–1109. doi:10.1002/Bies.10191

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231. doi:10.1016/S0955-0674(03)00017-6

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Albert R, Goldbeter A, Ruoff P, Sible J (2008) Biological switches and clocks. J R Soc Interface 5:S1–S8. doi:10.1098/rsif.2008.0179.focus

    Article  PubMed  Google Scholar 

  • Vanoosthuyse V, Hardwick KG (2009) Overcoming inhibition in the spindle checkpoint. Genes Dev 23(24):2799–2805. doi:10.1101/Gad.1882109

    Article  PubMed  CAS  Google Scholar 

  • Vasireddy R, Biswas S (2004) Modeling gene regulatory network in fission yeast cell cycle using hybrid Petri nets. Neural Inf Process 3316:1310–1315

    Article  Google Scholar 

  • Vinod PK, Freire P, Rattani A, Ciliberto A, Uhlmann F, Novak B (2011) Computational modelling of mitotic exit in budding yeast: the role of separase and Cdc14 endocycles. J R Soc Interface 8(61):1128–1141. doi:10.1098/rsif.2010.0649

    Article  PubMed  CAS  Google Scholar 

  • Wolfe BA, Gould KL (2004) Fission yeast Clp1p phosphatase affects G(2)/M transition and mitotic exit through Cdc25p inactivation. EMBO J 23(4):919–929. doi:10.1038/sj.emboj.7600103

    Article  PubMed  CAS  Google Scholar 

  • Wolfe BA, McDonald WH, Yates JR, Gould KL (2006) Phospho-regulation of the Cdc14/Clp1 phosphatase delays late mitotic events in S-pombe. Dev Cell 11(3):423–430. doi:10.1016/j.devcel.2006.07.018

    Article  PubMed  CAS  Google Scholar 

  • Yamada HY, Matsumoto S, Matsumoto T (2000) High dosage expression of a zinc finger protein, Grt1, suppresses a mutant of fission yeast slp1(+), a homolog of CDC20/p55CDC/Fizzy. J Cell Sci 113(22):3989–3999

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Okayama H, Nurse P (2000) Fission yeast Fizzy-related protein srw1p is a G(1)-specific promoter of mitotic cyclin B degradation. EMBO J 19(15):3968–3977

    Article  PubMed  CAS  Google Scholar 

  • Yamashita YM, Nakaseko Y, Kumada K, Nakagawa T, Yanagida M (1999) Fission yeast APC/cyclosome subunits, Cut20/Apc4 and Cut23/Apc8, in regulating metaphase-anaphase progression and cellular stress responses. Genes Cells 4(8):445–463

    Article  PubMed  CAS  Google Scholar 

  • Yanagida M (1998) Fission yeast cut mutations revisited: control of anaphase. Trends Cell Biol 8(4):144–149

    Article  PubMed  CAS  Google Scholar 

  • Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13(16):2039–2058

    Article  PubMed  CAS  Google Scholar 

  • Zarzov P, Decottignies A, Baldacci G, Nurse P (2002) G(1)/S CDK is inhibited to restrain mitotic onset when DNA replication is blocked in fission yeast. EMBO J 21(13):3370–3376

    Article  PubMed  CAS  Google Scholar 

  • Zwolak J, Adjerid N, Bagci EZ, Tyson JJ, Sible JC (2009) A quantitative model of the effect of unreplicated DNA on cell cycle progression in frog egg extracts. J Theor Biol 260(1):110–120. doi:10.1016/j.jtbi.2009.05.018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PA acknowledges P K Vinod and Nikhil Chaudhary, for useful discussions. KVV acknowledges funds from Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharad Bhartiya or K. V. Venkatesh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anbumathi, P., Bhartiya, S. & Venkatesh, K.V. Mathematical modeling of fission yeast Schizosaccharomyces pombe cell cycle: exploring the role of multiple phosphatases. Syst Synth Biol 5, 115–129 (2011). https://doi.org/10.1007/s11693-011-9090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-011-9090-7

Keywords

Navigation