Skip to main content
Log in

Comparative Evolutionary Analysis of Cell Cycle Proteins Networks in Fission and Budding Yeast

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Fission yeast and budding yeast are the two distantly related species with common ancestors. Various studies have shown significant differences in metabolic networks and regulatory networks. Cell cycle regulatory proteins in both species have differences in structural as well as in functional organization. Orthologous proteins in cell cycle regulatory protein networks seem to play contemporary role in both species during the evolution but little is known about non-orthologous proteins. Here, we used system biology approach to compare topological parameters of orthologous and non-orthologous proteins to find their contributions during the evolution to make an efficient cell cycle regulation. Observed results have shown a significant role of non-orthologous proteins in fission yeast in maintaining the efficiency of cell cycle regulation with less number of proteins as compared to budding yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fraser, H. B. (2005). Modularity and evolutionary constraint on proteins. Nature Genetics, 37(4), 351–352.

    Article  PubMed  CAS  Google Scholar 

  2. Han, J.-D. J., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang, L. V., et al. (2004). Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature, 430(6995), 88–93.

    Article  PubMed  CAS  Google Scholar 

  3. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., et al. (2003). Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34(2), 166–176.

    Article  PubMed  CAS  Google Scholar 

  4. Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378–382.

    Article  PubMed  CAS  Google Scholar 

  5. Podani, J., Oltvai, Z. N., Jeong, H., Tombor, B., Barabási, A.-L., & Szathmary, E. (2001). Comparable system-level organization of Archaea and Eukaryotes. Nature Genetics, 29(1), 54–56.

    Article  PubMed  CAS  Google Scholar 

  6. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science Signaling, 298(5594), 824.

    CAS  Google Scholar 

  7. Shen-Orr, S. S., Milo, R., Mangan, S., & Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31(1), 64–68.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen, O., Ashkenazy, H., Burstein, D., & Pupko, T. (2012). Uncovering the co-evolutionary network among prokaryotic genes. Bioinformatics, 28(18), i389–i394.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Adamic, L. A., & Huberman, B. A. (2000). Power-law distribution of the World Wide Web. Science, 287(5461), 2115.

    Article  Google Scholar 

  10. Nacher, J., & Akutsu, T. (2007). Recent progress on the analysis of power-law features in complex cellular networks. Cell Biochemistry and Biophysics, 49(1), 37–47.

    Article  PubMed  CAS  Google Scholar 

  11. Barabási, A.-L., de Menezes, M. A., Balensiefer, S., & Brockman, J. (2004). Hot spots and universality in network dynamics. The European Physical Journal B, 38(2), 169–175.

    Article  Google Scholar 

  12. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A.-L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586), 1551–1555.

    Article  PubMed  CAS  Google Scholar 

  13. Wagner, A. (2001). The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Molecular Biology and Evolution, 18(7), 1283–1292.

    Article  PubMed  CAS  Google Scholar 

  14. Wagner, A. (1996). Genetic redundancy caused by gene duplications and its evolution in networks of transcriptional regulators. Biological Cybernetics, 74(6), 557–567.

    Article  PubMed  CAS  Google Scholar 

  15. Miyata, M., & Miyata, H. (1978). Relationship between extracellular enzymes and cell growth during the cell cycle of the fission yeast Schizosaccharomyces pombe: acid phosphatase. Journal of Bacteriology, 136(2), 558–564.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Fantes, P., & Nurse, P. (1977). Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Experimental Cell Research, 107(2), 377–386.

    Article  PubMed  CAS  Google Scholar 

  17. Nurse, P. (1985). Yeast aids cancer research. Nature, 313(6004), 631.

    Article  PubMed  CAS  Google Scholar 

  18. Fantes, P. (1989). Yeast cell cycle. Current Opinion in Cell Biology, 1(2), 250.

    Article  PubMed  CAS  Google Scholar 

  19. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  PubMed  CAS  Google Scholar 

  20. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Shakya, M. Comparative Evolutionary Analysis of Cell Cycle Proteins Networks in Fission and Budding Yeast. Cell Biochem Biophys 70, 1167–1175 (2014). https://doi.org/10.1007/s12013-014-0037-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0037-y

Keywords

Navigation