Skip to main content

Artificial Modulation and Rewiring of Cell Cycle Progression Using Synthetic Circuits in Fission Yeast

  • Protocol
  • First Online:
Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2740))

  • 306 Accesses

Abstract

Cell cycle control is a central aspect of the biology of proliferating eukaryotic cells. However, progression through the cell cycle relies on a highly complex network, making it difficult to unravel the core design principles underlying the mechanisms that sustain cell proliferation and the ways in which they interact with other cellular pathways. In this context, the use of a synthetic approach to simplify the cell cycle network in unicellular genetic models such as fission yeast has opened the door to studying the biology of proliferating cells from unique perspectives. Here, we provide a series of methods based on a minimal cell cycle module in the fission yeast Schizosaccharomyces pombe that allows for an unprecedented artificial control of cell cycle events, enabling the rewiring and remodeling of cell cycle progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  CAS  PubMed  Google Scholar 

  2. Morgan DO (2007) The cell cycle: principles of control. New Science Press, London

    Google Scholar 

  3. Coudreuse D, Nurse P (2010) Driving the cell cycle with a minimal CDK control network. Nature 468:1074–1079

    Article  CAS  PubMed  Google Scholar 

  4. Perrot A, Millington CL, Gómez-Escoda B et al (2018) CDK activity provides temporal and quantitative cues for organizing genome duplication. PLoS Genet 14:e1007214

    Article  PubMed  PubMed Central  Google Scholar 

  5. Swaffer MP, Jones AW, Flynn HR et al (2016) CDK substrate phosphorylation and ordering the cell cycle. Cell 167:1750–1761.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gutiérrez-Escribano P, Nurse P (2015) A single cyclin–CDK complex is sufficient for both mitotic and meiotic progression in fission yeast. Nat Commun 6:6871

    Article  PubMed  Google Scholar 

  7. Banyai G, Baïdi F, Coudreuse D et al (2016) Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription. Nat Commun 7:11161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen T, Gomez-Escoda B, Munoz-Garcia J et al (2016) A drug-compatible and temperature-controlled microfluidic device for live-cell imaging. Open Biol 6:160156

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moreno S, Hayles J, Nurse P (1989) Regulation of p34cdc2 protein kinase during mitosis. Cell 58:361–372

    Article  CAS  PubMed  Google Scholar 

  10. Moreno S, Klar A, Nurse P (1991) [56] Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  CAS  PubMed  Google Scholar 

  11. Gérard C, Tyson JJ, Coudreuse D et al (2015) Cell cycle control by a minimal Cdk network. PLoS Comput Biol 11:e1004056

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stern B, Nurse P (1996) A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet 12:345–350

    Article  CAS  PubMed  Google Scholar 

  13. Fisher DL, Nurse P (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J 15:850–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bishop AC, Ubersax JA, Petsch DT et al (2000) A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407:395–401

    Article  CAS  PubMed  Google Scholar 

  15. Uemura T, Yanagida M (1984) Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J 3:1737–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watt S, Mata J, López-Maury L et al (2008) urg1: a uracil-regulatable promoter system for fission yeast with short induction and repression times. PLoS One 3:e1428

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yamano H, Gannon J, Hunt T (1996) The role of proteolysis in cell cycle progression in Schizosaccharomyces pombe. EMBO J 15:5268–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146:167–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to DC from the Agence Nationale de la Recherche (PRC eVOLve, ANR-18-CD13-0009), the Région Nouvelle Aquitaine (program CHESS, grant agreements 15963520 and 15964420), and the Ligue Contre le Cancer (Gironde, Dordogne). AJ was funded by the ANR eVOLve. PYW was supported by the Région Nouvelle Aquitaine (program CHESS, grant agreements 15963520 and 15964420) and the Ligue Contre le Cancer (Pyrénées-Atlantiques).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Coudreuse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jain, A., Wu, PY.J., Coudreuse, D. (2024). Artificial Modulation and Rewiring of Cell Cycle Progression Using Synthetic Circuits in Fission Yeast. In: Castro, A., Lacroix, B. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 2740. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3557-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3557-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3556-8

  • Online ISBN: 978-1-0716-3557-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics