Skip to main content
Log in

Mathematical and Linguistic Processing Differs Between Native and Second Languages: An fMRI Study

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

This study investigates the neuro-mechanisms underlying mathematical processing in native (L1) and nonnative (L2) languages. Using functional magnetic resonance imaging (fMRI), Mandarin Chinese learners of English were imaged while performing calculations, parity judgments and linguistic tasks in their L1 (Chinese) and L2 (English). Results show that compared to L1, (1) calculation in L2 involves additional neural activation, especially in the left hemisphere, including the inferior frontal gyrus (Broca’s area); (2) parity judgment engages similar regions for both languages, and (3) phonetic discrimination in L2 does not involve the perisylvian language (Broca’s and Wernicke’s) areas. These findings indicate that, calculation in L2, but not parity, can be processed through the L1 system, suggesting that the interaction between language and mathematics involves a specific neurocircuitry when associated with L2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For some early bilinguals, the most dominant language is not their L1. Their “preferred” language for arithmetic tasks is the dominant language in which they acquire mathematical knowledge (Bernardo 2001). For simplicity, in the present article “L1” is used more generally to refer to the most dominant language for both linguistic and mathematical knowledge.

  2. An effort was made to maintain a balanced number of male and female participants, as previous research has discussed the effect of gender on linguistic (Baxter et al. 2003; Frost et al. 1999; Shaywitz et al. 1995; Weiss et al. 2003) and mathematical (e.g., Kucian et al. 2005) processing. However, due to participant availability and the need to control for their level of L2 proficiency, we were not able to recruit equal number of males and females. As our preliminary behavioral analysis did not show gender and language interactions, the male and female data were pooled for subsequent analyses. However, the gender difference should not affect the interpretation of the current results in terms of the differences in math processing in L2 versus L1. Since the present participants performed the tasks in both L1 and L2, they served as their own controls. That is, if gender difference existed in L1 processing, it would be so in L2 processing as well. In our data analysis, we used direct language comparisons for each task, the results of which were presumably the differences only due to language.

  3. It should be noted that the discussion is based on the data at the threshold of p < 0.001 (uncorrected). See also the discussion in the Method section.

References

  • Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44, 75–106.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, L. C., Saykin, A. J., Flashman, L. A., Johnson, S. C., Guerin, S. J., Babcock, D. R., et al. (2003). Sex differences in semantic language processing: A functional MRI study. Brain and Language, 84, 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Bernardo, A. B. I. (2001). Asymmetric activation of number codes in bilinguals: Further evidence for the encoding complex model of number processing. Memory and Cognition, 29, 968–976.

    CAS  Google Scholar 

  • Best, C. T. (1995). A direct realist view of cross-language speech perception. In W. Strange (Ed.), Speech Perception and Linguistic Experience (pp. 171–204). Baltimore: York Press.

    Google Scholar 

  • Bohn, O.-S. (1995). Cross-language speech perception in adults: first language transfer doesn’t tell it all. In W. Strange (Ed.), Speech Perception and Linguistic Experience (pp. 279–304). Baltimore: York Press.

    Google Scholar 

  • Booth, J. R., Burman, D. D., Meyer, J. R., Darren, R., Gitelman, P., & Mesulam, M. M. (2002). Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage, 16, 7–22.

    Article  PubMed  Google Scholar 

  • Brett, M. (2007). Reporting SPM results at uncorrected p value thresholds. Retrieved from http://imaging.mrc-cbu.cam.ac.uk/imaging/UncorrectedThreshold?highlight=%28corrected%29.

  • Brysbaert, M., Fias, W., & Noël, M. P. (1998). The Whorfian hypothesis and numerical cognition: is ‘twenty-four’ processed in the same way as ‘four-and-twenty’? Cognition, 66, 51–77.

    Article  PubMed  CAS  Google Scholar 

  • Callan, D. E., Tajima, K., Callan, A. M., Kubo, R., Masaki, S., & Akahane-Yamada, R. (2003). Learning-induced neural plasticity associated with improved identification performance after training of a difficult second-language phonetic contrast. NeuroImage, 19, 113–124.

    PubMed  Google Scholar 

  • Callan, D. E., Jones, J. A., Callan, A. M., & Akahane-Yamada, R. (2004). Phonetic perceptual identification by native- and second-language speakers differentially activates brain regions involved with acoustic phonetic processing and those involved with articulatory–auditory/orosensory internal models. NeuroImage, 22, 1182–1194.

    Article  PubMed  Google Scholar 

  • Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53, 1–44.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, J. I. D. (1997). On the relation between skilled performance of simple division and multiplication. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1140–1159.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, J. I. D. & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130, 299–315.

    Article  CAS  Google Scholar 

  • Campbell, J. I. D., & Epp, L. J. (2004). An encoding-complex approach to numerical cognition in Chinese–English bilinguals. Canadian Journal of Experimental Psychology, 58, 229–244.

    PubMed  Google Scholar 

  • Campbell, J. I. D., Kanz, C. L., & Xue, Q. (1999). Number processing in Chinese–English bilinguals. Mathematical Cognition, 5, 1–39.

    Article  Google Scholar 

  • Chee, M. W. L., Hon, N., Lee, H. L., & Soon, C. S. (2001). Relative language proficiency modulates BOLD signal change when bilinguals perform semantic judgments. NeuroImage, 13, 1155–1163.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., & Stevenson, H. W. (1989). Homework: A cross-cultural examination. Child Development, 60, 551–561.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., & Stevenson, H. W. (1995). Motivation and mathematics achievement: A comparative study of Asian–American, Caucasian–American, and East–Asian high school students. Child Development, 66, 1215–1234.

    Article  Google Scholar 

  • Cheung, M., Chan, A. S., Chan, Y., & Lam, J. M. K. (2006). Language lateralization of Chinese–English bilingual patients with temporal lobe epilepsy: A functional MRI study. Neuropsychology, 20, 589–597.

    Article  PubMed  Google Scholar 

  • Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617–630.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, L., Dehaene, S., Chochon, F., Lehéricy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: A combined cognitive, anatomical and fMRI study. Neuropsychologia, 38, 1426–1440.

    Article  PubMed  CAS  Google Scholar 

  • Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., et al. (2006). Language control in the bilingual brain. Science, 312, 1537–1540.

    Article  PubMed  CAS  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    Article  PubMed  CAS  Google Scholar 

  • Dehaene, S. (1997). The Number Sense. Oxford: Oxford University Press.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219–250.

    PubMed  CAS  Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.

    Article  Google Scholar 

  • Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.

    Article  PubMed  CAS  Google Scholar 

  • Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T. et al. (2003). Learning complex arithmetic—An fMRI study. Cognitive Brain Research, 18, 76–88.

    Article  PubMed  CAS  Google Scholar 

  • Deloche, G., & Seron, X. (1982). From one to 1: An analysis of a transcoding process by means of neuropsychological data. Cognition, 12, 119–149.

    Article  PubMed  CAS  Google Scholar 

  • Deloche, G., & Seron, X. (1987). Numerical transcoding: A general production model. In G. Deloche, & X. Seron (Eds.), Mathematical Disabilities: A Cognitive Neuropsychological Perspective (pp. 137–170). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Denes, G., & Signorini, M. (2000). Task-specificity and similarities in processing numbers and words: Available data and future directions. Brain and Language, 71, 56–58.

    Article  PubMed  CAS  Google Scholar 

  • Flege, J. E. (1995). Second language speech learning theory, findings, and problems. In W. Strange (Ed.), Speech Perception and Linguistic Experience (pp. 233–273). Baltimore: York Press.

    Google Scholar 

  • Frenck-Mestre, C., & Vaid, J. (1993). Activation of number facts in bilinguals. Memory and Cognition, 21, 809–818.

    CAS  Google Scholar 

  • Frost, J., Binder, J., Springer, J., Hammeke, T., Bellgowan, P., Rao, S., et al. (1999). Language processing is strongly left lateralized in both sexes. Evidence from functional MRI, Brain, 122, 199–208.

    Google Scholar 

  • Gandour, J., Dzemidzic, M., Wong, D., Lowe, M., Tong, Y., Hsieh, L., et al. (2003). Temporal integration of speech prosody is shaped by language experience: An fMRI study. Brain and Language, 84, 318–336.

    Article  PubMed  Google Scholar 

  • Geary, D. C. (1996). The problem-size effect in mental addition: Developmental and cross-national trends. Mathematical Cognition, 2, 63–93.

    Article  Google Scholar 

  • Geary, D. C., Bow-Thomas, C. C., Fan, L., & Siegler, R. S. (1996). Development of arithmetical competencies in Chinese and American children: Influence of age, language, and schooling. Child Development, 67, 2022– 2044.

    Article  PubMed  CAS  Google Scholar 

  • Gelman, R., & Gallistel, C. R. (1978). The Child’s Understanding of Number. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Golestani, N., & Zatorre, R. J. (2004). Learning new sounds of speech: reallocation of neural substrates. NeuroImage, 494–506.

  • Gonzalez, E. G., & Kolers, P. A. (1987). Notational constraints on mental operations. In G. Deloche, & X. Seron (Eds.), Mathematical Disabilities: A Cognitive Neuropsychological Perspective (pp.27–42). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Goodglass, H., Klein, B., Carey, P., & Jones, K. J. (1996). Specific semantic word categories in aphasia. Cortex, 2, 74–89.

    Google Scholar 

  • Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4, 131–138.

    Article  PubMed  Google Scholar 

  • Hirsch, J., Moreno, D. R., & Kim, K. H. S. (2001). Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. Journal of Cognitive Neuroscience, 13, 389–405.

    Article  PubMed  CAS  Google Scholar 

  • Hurford, J. R. (1987). Language and Number. Oxford: Basil Blackwell.

    Google Scholar 

  • Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92, 101–144.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. H. S., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Klein, D., Milner, B., Zatorre, R. J., Zhao, V., & Nikelski, J. (1999). Cerebral organization in bilinguals: A pet study of Chinese–English verb generation. NeuroReport, 10, 2841–2846.

    Article  PubMed  CAS  Google Scholar 

  • Kong, J., Wang, C., Kwong, K., Vangel, M., & Gollub, R. (2005). The neural substrate of arithmetic operations and procedure complexity. Cognitive Brain Research, 22, 397–405.

    Article  PubMed  Google Scholar 

  • Kucian, K., Loenneker, T., Dietrich, T., Martin, E., & Von Aster, M. (2005). Gender differences in brain activation patterns during mental rotation and number related cognitive tasks. Psychology Science, Special Issue: Brain and Number, 47, 112–131.

    Google Scholar 

  • LeFevre, J., & Liu, J. (1997). The role of experience in numerical skill: Multiplication performance in adults from China and Canada. Mathematical Cognition, 3, 31–62.

    Article  Google Scholar 

  • Marrero, M. Z., Golden, C. J., & Espe-Pfeifer, P. (2002). Bilingualism, brain injury, and recovery: Implications for understanding the bilingual and for therapy. Clinical Psychology Review, 22, 463–478.

    Article  Google Scholar 

  • Marsh, L. G., & Maki, R. H. (1976). Efficiency of arithmetic operations in bilinguals as a function of language. Memory and Cognition, 4, 459–464.

    Google Scholar 

  • McClain, L., & Huang, J. Y. S. (1982). Speech of simple arithmetic in bilinguals. Memory and Cognition, 10, 591–596.

    Google Scholar 

  • McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition, 44, 107–157.

    Article  PubMed  CAS  Google Scholar 

  • McCloskey, M., & Caramazza, A. (1987). Cognitive mechanisms in normal and impaired number processing. In G. Deloche, & X. Seron (Eds.), Mathematical Disabilities: A Cognitive Neuropsychological Perspective (pp. 221–234). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • McCloskey, M., Solol, S. M., & Goodman, R. A. (1986). Cognitive processes in verbal–number production: Inferences from the performance of brain-damaged subjects. Journal of Experimental Psychology: General, 115, 307–330.

    Article  CAS  Google Scholar 

  • McDermott, K. B., Petersen, S. E., Watson, J. M., & Ojemann, J. G. (2003). A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia, 41, 293–303.

    Article  PubMed  Google Scholar 

  • Noël, M. P., Fias, W., & Brysbaert, M. (1997). About the influence of the presentation format on arithmetical-fact retrieval processes. Cognition, 63, 335–374.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Perani, D., Paulesu, E., Sebastian Galles, N., Dupoux, E., Dehaene, S., Bettinardi, V., et al. (1998). The bilingual brain: Proficiency and age of acquisition of the second language. Brain, 121, 1841–1852.

    Article  PubMed  Google Scholar 

  • Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: A PET study. Journal of Cognitive Neuroscience, 12, 461–479.

    Article  PubMed  CAS  Google Scholar 

  • Proios, P., Weniger, D., & Willmes, K. (2002). Number representation deficit: a bilingual case of failure to access written verbal numeral representations, Neuropsychologia, 40, 2341–2349.

    Article  PubMed  Google Scholar 

  • Pu, Y., Liu, H., Spinks, J. A., Mahankali, S., Xiong, J., Feng, C., et al. (2001). Cerebral hemodynamic response in Chinese (first) and English (second) language processing revealed by event-related functional MRI. Magnetic Resonance Imaging, 19, 643–647.

    Article  PubMed  CAS  Google Scholar 

  • Pulvermüller, F., Huss, M., Kherif, F., Martin, D. F., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. PNAS, 103, 7865–7870.

    Article  PubMed  Google Scholar 

  • Rickard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: an fMRI study. Neuropsychologia, 38, 325–335.

    Article  PubMed  CAS  Google Scholar 

  • Shaywitz, B., Shaywitz, S., Pugh, K., Constable, R., Skudlarski, P., Fulbright, R. (1995). Sex differences in the functional organization of the brain for language. Nature, 372, 607–609.

    Article  Google Scholar 

  • Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Simon, O., Kherif, F., Flandin, G., Poline, J. B., Rivière, D., Mangin, J.F., et al. (2004). Automatized clustering and functional geometry of human parietofrontal networks for language, space, and number. NeuroImage, 23, 1192–1202.

    Article  PubMed  Google Scholar 

  • Spelke, E. S., & Tsivkin, S. (2001). Language and number: A bilingual training study. Cognition, 78, 45–88.

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis, E. A., Marslen-Wilson, W. D., Tyler, L. K., & Fletcher, P. C. (2005). Cingulate control of fronto-temporal integration reflects linguistic demands: A three-way interaction in functional connectivity. NeuroImage, 28, 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Tan, L. H., Liu, H., Perfetti, C., Spinks, J. A., Fox, P. T., & Gao, J. H. (2001). The neural system underlying Chinese logograph reading. NeuroImage, 13, 836–846.

    Article  PubMed  CAS  Google Scholar 

  • Tan, L. H., Spinks, J. A., Feng, C. M., Siok, W. T., Perfetti, C. A., Xiong, J., et al. (2003). Neural systems of second language reading are shaped by native language. Human Brain Mapping, 18, 155–166.

    Google Scholar 

  • Tham, W. W. P., Rickard, T. C., Liow, S. J., Rajapakse, J. C., Leong, T. C., Ng, S. E. S., et al. (2005). Phonological processing in Chinese–English bilingual biscriptals: An fMRI study. NeuroImage, 28, 579–587.

    Article  PubMed  Google Scholar 

  • Venkatraman, V., Ansari, D., & Chee, M. W. L. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43, 744–753.

    Article  PubMed  Google Scholar 

  • Venkatraman, V., Siong, S. C., Chee, M. W. L., & Ansari, D. (2006). Effect of Language Switching on Arithmetic: A Bilingual fMRI Study. Journal of Cognitive Neuroscience, 18, 64–74.

    Article  PubMed  Google Scholar 

  • Wang, X. & Munro, M. (2004). Computer-based training for learning English vowel contrasts. System, 32, 539–552.

    Article  Google Scholar 

  • Wang, Y., Jongman, A., & Sereno, J. (2001). Dichotic perception of lexical tones by Mandarin and American listeners. Brain and Language, 78, 332–348.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Sereno, J. A., Jongman, A., & Hirsch, J. (2003). fMRI evidence for cortical modification during learning of Mandarin lexical tone. Journal of Cognitive Neuroscience, 15, 1019–1027.

    Article  PubMed  Google Scholar 

  • Wang, Y., Behne, D., Jongman, A., & Sereno, J. (2004). The role of linguistic experience in the hemispheric processing of lexical tone. Journal of Applied Psycholinguistics, 25, 449–466.

    Article  Google Scholar 

  • Wang, Y., Xue, G., Chen, C., Xue, F., & Dong, Q. (2007). Neural bases of asymmetric language switching in second-language learners: An ER-fMRI study. NeuroImage, 35, 862–870.

    Article  PubMed  Google Scholar 

  • Warrington, E. K. (1982). The fractionation of arithmetical skills: A single case study. Quarterly Journal of Experimental Psychology, 34A, 31–51.

    Google Scholar 

  • Weekes, B. S., Chan, A., Kowk, J. S. W., Tan, L. H., & Jin, Z. (2004). AoA effects on Chinese language processing: An fMRI study. Brain and Language, 91, 33–34.

    Article  Google Scholar 

  • Weiss, E., Siedentopf, C., Hofer, A., Deisenhammer, E., Hoptman, M., Kremser, C., et al. (2003). Brain activation pattern during a verbal fluency test in healthy male and female volunteers: A functional magnetic resonance imaging study, Neuroscience Letters, 352, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193.

    Article  PubMed  CAS  Google Scholar 

  • Xue, G., Dong, Q., Jin, Z., Zhang, L., & Wang, Y. (2004). An fMRI study with semantic access in low proficiency second language learners. NeuroReport, 15, 791–796.

    Article  PubMed  Google Scholar 

  • Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. NeuroImage, 13, 314–327.

    Article  PubMed  CAS  Google Scholar 

  • Zatorre, R., Evans, A., Meyer, E., & Gjedde, A. (1992). Lateralization of phonetic and pitch processing in speech perception. Science, 256, 846–849.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Kuhl, P. K., Imada, T., Kotani, M., & Tohkura, Y. (2005). Effects of language experience: Neural commitment to language-specific auditory patterns. NeuroImage, 26, 703–720.

    Article  PubMed  Google Scholar 

  • Zhou, X., Chen, C., Zhang, H., Xue, G., Dong, Q., Jin, Z., et al. (2006). Neural substrates for forward and backward recitation of numbers and the alphabet: A close examination of the role of intraparietal sulcus and perisylvian areas. Brain Research, 1099, 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X., Chen, C., Zang, Y., Dong, Q., Chen, C., Qiao, S., et al. (2007). Dissociated brain organization for single-digit addition and multiplication. NeuroImage, 35, 871–880.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Neda Sedora and Melissa Sy for their assistance in data analysis, and Dawn Behne and Allard Jongman for valuable comments. This research was supported by the President’s Research Grant at Simon Fraser University, and the fMRI Research Center at Columbia University. This research has been presented at the First Acoustical Society of America (ASA) Workshop on 2nd Language Speech Learning, by Wang, Y., Hirsch, J., Sy, M., Lin, L., & Sedora, N., 2005, Vancouver, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Lin, L., Kuhl, P. et al. Mathematical and Linguistic Processing Differs Between Native and Second Languages: An fMRI Study. Brain Imaging and Behavior 1, 68–82 (2007). https://doi.org/10.1007/s11682-007-9007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-007-9007-y

Keywords

Navigation