Skip to main content

Advertisement

Log in

The timing of language learning shapes brain structure associated with articulation

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech–motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abutalebi J, Della Rosa PA, Gonzaga AK, Keim R, Costa A, Perani D (2013) The role of the left putamen in multilingual language production. Brain Lang 125(3):307–313

    Article  PubMed  Google Scholar 

  • Ad-Dab’bagh Y, Einarson D, Lyttelton O, Muehlboeck J-S, Mok K, Ivanov O, Vincent RD, Lepage C, Lerch J, Fombonne E, Evans AC (2006) The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research. In: Corbetta M (ed) Proceedings of the 12th annual meeting of the organization for human brain mapping. NeuroImage, Florence. http://www.bic.mni.mcgill.ca/users/yaddab/Yasser-HBM2006-Poster.pdf

  • Berken JA, Gracco VL, Chen J-K, Watkins KE, Baum SM, Callahan M, Klein D (2015) Neural activation in speech production and reading aloud in native and non-native languages. NeuroImage 112:208–217

    Article  PubMed  Google Scholar 

  • Bermudez P, Lerch JP, Evans AC, Zatorre RJ (2008) Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 19:1583–1596

    Article  PubMed  Google Scholar 

  • Boersma P (2001) Praat, a system for doing phonetics by computer. Glot Int 5(9/10):341–345

    Google Scholar 

  • Booth JR, Mehdiratta N, Burman DD, Bitan T (2008) Developmental increases in effective connectivity to brain regions involved in phonological processing during tasks with orthographic demands. Brain Res 1189:78–89

    Article  CAS  PubMed  Google Scholar 

  • Buckley KA, Tobey EA (2011) Cross-modal plasticity and speech perception in pre- and postlingually deaf cochlear implant users. Ear Hear 32(1):2–15. doi:10.1097/AUD.0b013e3181e8534c

    PubMed  Google Scholar 

  • Cobb T (2009) The compleat lexical tutor. http://www.lextutor.ca. Accessed 18 Sep 2012

  • Christophe A, Guasti T, Nespor M, Dupoux E, Van Ooyen B (1997) Reflections on phonological bootstrapping: its role for lexical and syntactic acquisition. Lang Cogn Proc 12:585–612. doi:10.1080/016909697386637

    Article  Google Scholar 

  • Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    Article  CAS  PubMed  Google Scholar 

  • Collins D, Holmes C, Peters T, Evans AC (1995) Automatic 3D model-based neuroanatomical segmentation. Hum Brain Mapp 3(3):190–208

    Article  Google Scholar 

  • Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draganski B, Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312

    Article  CAS  PubMed  Google Scholar 

  • Flege JE, Munro MJ, MacKay IRA (1995) Factors affecting strength of perceived foreign accent in a second language. J Acoust Soc Am 97:3125–3134

    Article  CAS  PubMed  Google Scholar 

  • Fonov V, Evan AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative Group (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1):313–327

    Article  PubMed  Google Scholar 

  • Frenck-Mestre C, Anton JL, Roth M, Vaid J, Viallet F (2005) Articulation in early and late bilinguals’ two languages: evidence from functional magnetic resonance imaging. NeuroReport 7:761–765

    Article  Google Scholar 

  • Gaser C, Schlaug G (2003) Gray matter differences between musicians and nonmusicians. Ann N Y Acad Sci 999:514–517

    Article  PubMed  Google Scholar 

  • Gerber P, Schlaffke L, Heba S, Greenlee MW, Schultz T, Schmidt-Wilcke T (2014) Juggling revisited: a voxel-based morphometry study with expert jugglers. NeuroImage 95:320–325

    Article  CAS  PubMed  Google Scholar 

  • Giraud AL, Lee HJ (2007) Predicting cochlear implant outcome from brain organisation in the deaf. Restor Neurol Neurosci 25:381–390

    PubMed  Google Scholar 

  • Golestani N, Pallier C (2007) Anatomical correlates of foreign speech sound production. Cereb Cortex 17(4):929–934

    Article  PubMed  Google Scholar 

  • Golestani N, Zatorre RJ (2004) Learning new sounds of speech: reallocation of neural substrates. NeuroImage 21(2):494–506

    Article  PubMed  Google Scholar 

  • Golestani N, Molko N, Dehaene S, LeBihan D, Pallier C (2007) Brain structure predicts learning of foreign speech sounds. Cereb Cortex 17(3):575–582

    Article  PubMed  Google Scholar 

  • Goswami U (2008) The development of reading across languages. Ann N Y Acad Sci 1145:1–12

    Article  PubMed  Google Scholar 

  • Green DW (1998) Mental control of the bilingual lexico-semantic system. Biling Lang Cognit 1:67–81

    Article  Google Scholar 

  • He Q et al (2013) Decoding the neuroanatomic basis of reading ability. J Neurosci 33(31):12835–12843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez AE, Li P (2007) Age of acquisition: its neural and computational mechanisms. Psychol Bull 133(4):638–650

    Article  PubMed  Google Scholar 

  • Hervais-Adelman AG, Moser-Mercer B, Golestani N (2011) Executive control of language in the bilingual brain: integrating the evidence from neuroimaging to neuropsychology. Front Psychol 2:234. doi:10.3389/fpsyg.2011.00234 (eCollection 2011)

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyde K, Lerch J, Norton A, Forgeard M, Winner E, Evans AC, Schlaug G (2009) Musical training shapes structural brain development. J Neurosci 29(10):3019–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JS, Newport EL (1989) Critical period effects in second language learning: the influence of maturational state on the acquisition of English as a second language. Cogn Psychol 21(1):60–99

    Article  CAS  PubMed  Google Scholar 

  • Klein D, Zatorre RJ, Milner B, Meyer E, Evans AC (1994) Left putaminal activation when speaking a second language: evidence from PET. NeuroReport 5:2295–2297

    Article  CAS  PubMed  Google Scholar 

  • Klein D, Milner B, Zatorre RJ, Meyer E, Evans AC (1995) The neural substrates underlying word generation: a bilingual functional-imaging study. Proc Natl Acad Sci USA 92(7):2899–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein D, Watkins KE, Zatorre RJ, Milner B (2006) Word and nonword repetition in bilingual subjects: a PET study. Hum Brain Mapp 27:153–161

    Article  PubMed  Google Scholar 

  • Kuhl PK (2010) Brain mechanisms in early language acquisition. Neuron 65(7):713–727

    Article  Google Scholar 

  • Kurowski KM, Blumstein SE, Alexander M (1996) The foreign accent syndrome: a reconsideration. Brain Lang 54(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Luk G, Bialystok E, Craik FI, Grady CL (2011) Lifelong bilingualism maintains white matter integrity in older adults. J Neurosci 31(46):16808–16813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire EA, Woollett K, Spiers HJ (2006) London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16(12):1091–1101

    Article  PubMed  Google Scholar 

  • Marchand WR, Lee JN, Thatcher JW, Hsu EW, Rashkin E, Suchy Y, Chelune G, Starr J, Barbera SS (2008) Putamen coactivation during motor task execution. NeuroReport 19(9):957–960

    Article  PubMed  Google Scholar 

  • Marian V (2007) The Language Experience and Proficiency Questionnaire (LEAP-Q): assessing language profiles in bilinguals and multilinguals. J Speech Lang Hear Res 50(4):940–967

    Article  PubMed  Google Scholar 

  • Mechelli A, Crinion JT, Noppeney U, O’Doherty J, Ashburner J, Frackowiak RS, Price CJ (2004) Neurolinguistics: structural plasticity in the bilingual brain. Nature 431:757

    Article  CAS  PubMed  Google Scholar 

  • Moyer A (2007) Empirical consideration on the age factor in L2 phonology. Issues Appl Ling 15(2):109–127

    Google Scholar 

  • Penfield W, Roberts L (1959) speech and brain mechanisms. Athenaeum, New York

    Google Scholar 

  • Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a metaz-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16(10):1508–1521

    Article  PubMed  Google Scholar 

  • Radua J, Canales-Rodriguez ES, Pomerol-Clotet E, Salvador R (2014) Validity of modulation and optimal setting for advanced voxel-based morphometry. NeuroImage 86:81–90

    Article  PubMed  Google Scholar 

  • Reiterer SM, Hu X, Erb M, Rota G, Nardo D, Grodd W, Winkler S, Ackermann H (2011) Individual differences in audio-vocal speech imitation aptitude in late bilinguals: functional neuro-imaging and brain morphology. Front Psychol 2:271. doi:10.3389/fpsyg.2011.00271 (eCollection 2011)

    PubMed  PubMed Central  Google Scholar 

  • Ressel V, Pallier C, Ventura-Campos N, Díaz B, Roessler A, Ávila C, Sebastián-Gallés N (2012) An effect of bilingualism on the auditory cortex. J Neurosci 32(47):16597–16601

    Article  CAS  PubMed  Google Scholar 

  • Saur D, Baumgaertner A, Moehring A, Büchel C, Bonnesen M, Rose M, Musso M, Meisel JM (2009) Word order processing in the bilingual brain. Neuropsycholgia 47(1):158–168

    Article  Google Scholar 

  • Schlaffke L, Lissek S, Lenz M, Brüne M, Juckel G, Hinrichs T, Platen P, Tegenthoff M, Schmidt-Wilcke T (2014) Sports and brain morphology—a voxel-based morphometry study with endurance athletes and martial arts. Neuroscience 259:35–42

    Article  CAS  PubMed  Google Scholar 

  • Schön D, Magne C, Besson M (2004) The music of speech: music training facilitates pitch in both music and language. Psychophysiology 41(3):3410349

    Article  Google Scholar 

  • Shum M, Shiller DM, Baum SR, Gracco VL (2011) Sensorimotor integration for speech motor learning involves the inferior parietal cortex. Eur J Neurosci 34(11):1817–1822

    Article  PubMed  PubMed Central  Google Scholar 

  • Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. ICEE Trans Med Imaging 17(1):87–97

    Article  CAS  Google Scholar 

  • Sowell ER, Thompson PM, Toga AW (2004) Mapping changes in the human cortex throughout the span of life. Neuroscientist 10(4):372–392

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical, New York

    Google Scholar 

  • Wartenburger I, Heekeren HR, Abutalebi J, Cappa SF, Villringer A, Perani D (2003) Early setting of grammatical processing in the bilingual brain. Neuron 37(1):159–170

    Article  CAS  PubMed  Google Scholar 

  • Weber-Fox CM, Neville HJ (1996) Maturational constraints on functional specializations for language processing: ERP and behavioral evidence in bilingual speakers. J Cogn Neurosci 8(3):231–236

    Article  CAS  PubMed  Google Scholar 

  • Wechsler D (1981) Manual for the Wechsler Adult Intelligence Scale—revised. The Psychological Corporation, San Antonio

    Google Scholar 

  • Werker JF, Tees RC (1984) Phonemic and phonetic factors in adult cross-language speech perception. J Acoust Soc Am 75(6):1867–1878

    Article  Google Scholar 

  • Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4(1):58–73

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ (2013) Predispositions and plasticity in music and speech learning: neural correlates and implications. Science 342(6158):585–589

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Jennifer Soles assisted with the experimental setup and subject recruitment. Megan Callahan assisted with the quantitative language assessment. The study was supported by funds from the Blema and Arnold Steinberg Family Foundation and grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to D. Klein and V. Gracco, the Social Sciences and Humanities Research Council of Canada (SSHRC) to Baum, Gracco, and Klein, and a Vanier Canada Doctoral Scholarship to J. Berken (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Berken.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berken, J.A., Gracco, V.L., Chen, JK. et al. The timing of language learning shapes brain structure associated with articulation. Brain Struct Funct 221, 3591–3600 (2016). https://doi.org/10.1007/s00429-015-1121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1121-9

Keywords

Navigation